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1 Review of Probability Theory

1.1 Introduction

This guide takes a look under the hood of widely used methods in econometrics and

beyond. It focuses on Ordinary Least Squares, Maximum Likelihood, Generalized Method

of Moments. It shows when and why these methods work with simple examples. This

guide also provides an overview of the most important fundamentals of Probability Theory

and Distribution Theory on which these methods are based and how to analyze them with

the Frisch-Waugh-Lovell decomposition and with Monte Carlo Simulation.

1.2 Probability fundamentals

Discrete and continuous random variables

A random variable X is discrete if the set

of outcomes x is either �nite or countably

in�nite.

Discrete Random Variable

The random variableX is continuous if the

set of outcomes x is in�nitely divisible and,

hence, not countable.

Continuous Random Variable
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Discrete probabilities

For values x of a discrete random variable X, the probability mass function (pmf)

f(x) = Prob(X = x).

The axioms of probability require

0 ≤ Prob(X = x) ≤ 1,∑
x

f(x) = 1.

Discrete cumulative probabilities

For values x of a discrete random variable X, the cumulative distribution function

F (x) =
∑
X≤x

f(x) = Prob(X ≤ x),

where

f(xi) = F (xi)− F (xi−1).

Roll of a six-sided die

x f(x) F (X ≤ x)

1 f(1) = 1/6 F (X ≤ 1) = 1/6

2 f(2) = 1/6 F (X ≤ 2) = 2/6

3 f(3) = 1/6 F (X ≤ 3) = 3/6

4 f(4) = 1/6 F (X ≤ 4) = 4/6

5 f(5) = 1/6 F (X ≤ 5) = 5/6

6 f(6) = 1/6 F (X ≤ 6) = 6/6

What's the probability that you roll a 5 or higher?

F (X ≥ 5) = 1− F (X ≤ 4) = 1− 2/3 = 1/3.

Example
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Continuous probabilities

For values x of a continuous random variable X, the probability is zero but the area under

f(x) ≥ 0 in the range form a to b is the probability density function (pdf)

Prob(a ≤ x ≤ b) = Prob(a < x < b) =

∫ b

a

f(x)dx ≥ 0.

The axioms of probability require ∫ +∞

−∞
f(x)dx = 1.

f(x) = 0 outside the range of x.

The cumulative distribution function (cdf) is

F (x) =

∫ x

−∞
f(t)dt,

f(x) =
dF (x)

dx
.

Cumulative distribution function

For continuous and discrete variables, F (x) satis�es

� 0 ≤ F (x) ≤ 1

� If x > y, then F (x) ≥ F (y)

� F (+∞) = 1

� F (−∞) = 0

and

Prob(a < x ≤ b) = F (b)− F (a).

Properties of cdf

Symmetric distributions

For symmetric distributions

f(µ− x) = f(µ+ x)

and

1− F (x) = F (−x).
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1.3 Mean and variance

The mean, or expected value, of a discrete random variable is

µ = E[x] =
∑
x

xf(x)

Mean of a random variable (Discrete)

Roll of a six-sided die

x f(x) = 1/n F (X ≤ x) = (x− a+ 1)/n

a = 1 f(1) = 1/6 F (X ≤ 1) = 1/6

2 f(2) = 1/6 F (X ≤ 2) = 2/6

3 f(3) = 1/6 F (X ≤ 3) = 3/6

4 f(4) = 1/6 F (X ≤ 4) = 4/6

5 f(5) = 1/6 F (X ≤ 5) = 5/6

b = 6 f(6) = 1/6 F (X ≤ 6) = 6/6

What's the expected value from rolling the dice?

E[x] = 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 = 3.5.

This is the mean (and the median) of a uniform distribution (n+1)/2 = (a+ b)/2 = 3.5.

Example
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For a continuous random variable x, the expected value is

E[x] =

∫
x

xf(x)dx.

Mean of a random variable (Continuous)

The continuous uniform distribution is 1/(b− a) for a ≤ x ≤ b and 0 otherwise.

E[x] =

∫ b

a

x

b− a
dx =

1

b− a

∫ b

a

xdx.

Antiderivative of x is x2/2

E[x] =
1

b− a
(b2/2− a2/2) =

(b− a)(b+ a)

2(b− a)
=

a+ b

2
.

The mean (and the median) is again (a+ b)/2 = 3.5.

Example

For a function g(x) of x, the expected value is E[g(x)] =
∑

x g(x)Prob(X = x) or

E[g(x)] =
∫
x
g(x)f(x)dx. If g(x) = a+bx for constants a and b, then E[a+bx] = a+bE[x].

The variance of a random variable σ2 > 0 is

σ2 = V ar[x] = E[(x− µ)2] =


∑

x(x− µ)2f(x) if x is discrete,

∫
x
(x− µ)2f(x)dx if x is continuous.

Variance of a random variable

Roll of a six-sided die. What's the variance V [x] from rolling the dice?

The probability of observing x, Pr(X = x) = 1/n, is discretely uniformly distributed

E[x] =
n+ 1

2
; (E[x])2 =

(n+ 1)2

4
.

Example
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E[x2] =
∑
x

Pr(X = x) =
1

n

n∑
x=1

x2 =
(n+ 1)(2n+ 1)

6
due to the sequence sum of squares.

V [x] = E[x2]− (E[x])2.

V [x] = (n+1)(2n+1)
6

− (n+1)2

4
= n2−1

12
= (62 − 1)/12 ≈ 2.92.

For any random variable x and any positive constant k > 1,

Pr(µ− kσ < x < µ+ kσ) ≥ 1− 1

k2
.

Chebychev inequality

Share outside k standard deviations.

If x is normally distributed, the bound is 1− (2Φ(k)− 1).

95% of the observations are within 1.96 standard deviations for normally distributed

9



x. If x is not normal, 95% are at most within 4.47 standard deviations.

Normal coverage

1.4 Moments of a random variable

The central moments are

µr = E[(x− µ)r].

Central moments of a random variable

Moments: Two measures often used to describe a probability distribution are

� expectation = E[(x− µ)1]

� variance = E[(x− µ)2]

� skewness = E[(x− µ)3]

� kurtosis = E[(x− µ)4]

The skewness is zero for symmetric distributions.

Example
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Higher order moments

For the random variable X, with probability density function f(x), if the function

M(t) = E[etx].

exists, then it is the moment generating function(MGF ).

Moment generating function

� Often simpler alternative to working directly with probability density functions or

cumulative distribution functions

� Not all random variables have moment-generating functions

The nth moment is the nth derivative of the moment-generating function, evaluated at
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t = 0.

The MGF for the standard normal distribution with µ = 0, σ = 1 is

Mz(t) = eµt+σ2t2/2 = et
2/2.

If x and y are independent, then the MGF of x+ y is Mx(t)My(t).

Example

For x ∼ N(µ, σ2) for some µ, σ > 0 with moment generating function

Mx(t) = exp(µt+
1

2
σ2t2), the �rst moment generating function of x is

E[(x− µ)1] = Mx
′(t) = (µ+ σ2t) exp

(
µt+

1

2
σ2t2

)
.

E[(x− µ)1] = Mx
′(t) =

d

[
exp

(
µt+

1

2
σ2t2

)]
dt

=

d

[
µt+

1

2
σ2t2

]
dt

d

[
exp

(
µt+

1

2
σ2t2

)]
d(µt+

1

2
σ2t2)

= (µ+ σ2t) exp

(
µt+

1

2
σ2t2

)
.

Example

If x ∼ N(0, 1),

� the skewness is E[(x− µ)3] = 0 and

� the kurtosis is E[(x− µ)4] = 3.
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E[(x−µ)1] = Mx
′(t) = (µ+σ2t) exp

(
µt+

1

2
σ2t2

)
with µ = 0, σ = 1, t = 0 : E[x] = µ = 0

E[(x− µ)2] = Mx
′′(t) =

(
σ2 + (µ+ σ2t)2

)
exp

(
µt+

1

2
σ2t2

)
with µ = 0, σ = 1, t = 0 : E[(x− µ)2] = σ2 = 1

E[(x− µ)3] = Mx
′′′(t) =

(
3σ2(µ+ σ2t) + (µ+ σ2t)3

)
exp

(
µt+

1

2
σ2t2

)
with µ = 0, σ = 1, t = 0 : E[(x− µ)3] = 0

E[(x− µ)4] = Mx
(4)(t) =

(
3σ4 + 6σ2(µ+ σ2t)2 + (µ+ σ2t)4

)
exp

(
µt+

1

2
σ2t2

)
with µ = 0, σ = 1, t = 0 : E[(x− µ)4] = 3.

Example

Approximating mean and variance

For any two functions g1(x) and g2(x),

E[g1(x) + g2(x)] = E[g1(x)] + E[g2(x)].

For the general case of a possibly nonlinear g(x),

E[g(x)] =

∫
x

g(x)f(x)dx,

and

V ar[g(x)] =

∫
x

(g(x)− E[g(x)])2 f(x)dx.

E[g(x)] and V ar[g(x)] can be approximated by a �rst order linear Taylor series:

g(x) ≈ [g(x0)− g′(x0)x0] + g′(x0)x. (1)

First order linear Taylor series
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Taylor approximation Order 1

A natural choice for the expansion point is x0 = µ = E(x). Inserting this value in Eq.

(1) gives

g(x) ≈ [g(µ)− g′(µ)µ] + g′(µ)x,

so that

E[g(x)] ≈ g(µ),

and

V ar[g(x)] ≈ [g′(µ)]2V ar[x].
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Isoelastic utility. cbad = 10.00 Euro; cgood = 100.00 Euro; probability good outcome

50%

µ = E[c] = 1/2× cbad + 1/2× cgood =55.00 Euro

u(c) = c1/2

u(µ) = 7.42 approximates E[u(c)] = 1/2× 101/2 + 1/2× 1001/2 = 6.58

Example

Isoelastic utility.

cbad = 10.00 Euro; cgood = 100.00 Euro; probability good outcome 50%; µ = 55.00 Euro

u(c) = ln(c)

u(µ) = 4.01 approx.

E[u(c)] = 1/2× ln(10) + 1/2× ln(100)

= 3.45

Jensen's inequality:

E[g(x)] ≤ g(E[x])] if g′′(x) < 0.

V [u(c)] ≈ (1/55)2((10− 55)2 + (100− 55)2) = 1.34

V [u(c)] = (ln(10)− E[u(c)])2 + (ln(100)− E[u(c)])2 = 2.65

Example

1.5 Useful rules

� V ar[x] = E[x2]− µ2

� E[x2] = σ2 + µ2

� If a and b constants, V ar[a+ bx] = b2V ar[x]

� V ar[a] = 0

� If g(x) = a+ bx and a and b are constants, E[a+ bx] = a+ bE[x]
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� Coverage Pr(|X − µ| ≥ kσ) ≤ 1
k2

� Skewness = E[(x− µ)3]

� Kurtosis = E[(x− µ)4]

� For symmetric distributions f(µ− x) = f(µ+ x); 1− F (x) = F (−x)

� E[g(x)] ≈ g(µ)

� V ar[g(x)] ≈ [g′(µ)]2V ar[x]

16



2 Speci�c Distributions
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Discrete distributions

The Bernoulli distribution for a single binomial outcome (trial) is

Prob(x = 1) = p,

Prob(x = 0) = 1− p,

where 0 ≤ p ≤ 1 is the probability of success.

� E[x] = p and

� V [x] = E[x2]− E[x]2 = p− p2 = p(1− p).

The distribution for x successes in n trials is the binomial distribution,

Prob(X = x) =
n!

(n− x)!x!
px(1− p)n−x x = 0, 1, . . . , n.

The mean and variance of x are

� E[x] = np and

� V [x] = np(1− p).

Bernoulli distribution

Example of a binomial [n = 15, p = 0.5] distribution:
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The limiting form of the binomial distribution, n → ∞, is the Poisson distribution,

Prob(X = x) =
eλλx

x!
.

The mean and variance of x are

� E[x] = λ and

� V [x] = λ.

Poisson distribution

Example of a Poisson [3] distribution:
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2.1 Normal distribution

Random variable x ∼ N [µ, σ2] is distributed according to the normal distribution with

mean µ and standard deviation σ obtained as

f(x|µ, σ) = 1

σ
√
2π

e−
1
2
(x−µ

σ
)2 .

The normal distribution

The density is denoted ϕ(x) and the cumulative distribution function is denoted Φ(x)

for the standard normal. Example of a standard normal, (x ∼ N [0, 1]), and a normal

with mean 0.5 and standard deviation 1.3:
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2.2 Method of transformations

Continuous variable x may be transformed to a discrete variable y. Calculate the mean

of variable x in the respective interval:

Prob(Y = µ1) = P (−∞ < X ≤ a),

P rob(Y = µ2) = P (a < X ≤ b),

P rob(Y = µ3) = P (b < X ≤ ∞).

Transformation of random variables

If x is a continuous random variable with pdf fx(x) and if y = g(x) is a continuous

monotonic function of x, then the density of y is obtained by

Prob(y ≤ b) =

∫ b

−∞
fx(g

−1(y))|g−1′(y)|dy.

With fy(y) = fx(g
−1(y))|g−1′](y)|dy, this equation can be written as

Prob(y ≤ b) =

∫ b

−∞
fy(y)dy.

Method of transformations

If x ∼ N [µ, σ2], then the distribution of y = g(x) = x−µ
σ

is found as follows:

g−1(y) = x = σy + µ

g−1′(y) =
dx

dy
= σ

Therefore with fx(x) =
1

σ
√
2π
e−

1
2
[(g−1(y)−µ)2/σ2]|g−1′(y)|

fy(y) =
1√
2πσ

e−[(σy+µ)−µ]2/2σ2|σ| = 1√
2π

e−y2/2.

Example
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Properties of the normal distribution

� Preservation under linear transformation:

If x ∼ N [µ, σ2], then (a+ bx) ∼ N [a+ bµ, b2σ2].

� Convenient transformation a = −µ/σ and b = 1/σ:

The resulting variable z = (x−µ)
σ

has the standard normal distribution with density

ϕ(z) =
1√
2π

e−
z2

2 .

� If x ∼ N [µ, σ2], then f(x) = 1
σ
ϕ[x−µ

σ
]

� Prob(a ≤ x ≤ b) = Prob
(
a−µ
σ

≤ x−µ
σ

≤ b−µ
σ

)
� ϕ(−z) = 1− ϕ(z) and Φ(−x) = 1− Φ(x) because of symmetry

If z ∼ N [0, 1], then z2 ∼ χ2[1] with pdf 1√
2πy

e−y/2.

fx(x) =
1√
2π

e−
x2

2

y = g(x) = x2

g−1(y) = x = ±√
y there are two solutions to g1, g2.

g−1′(y) =
dx

dy
= ±1/2y−1/2

fy(y) = fx(g
−1
1 (y))|g−1′

1 (y)|+ fx(g
−1
2 (y))|g−1′

2 (y)|

fy(y) = fx(
√
y)|1/2y−1/2|+ fx(−

√
y)| − 1/2y−1/2|

fy(y) =
1

2
√
2πy

e−
y
2 +

1

2
√
2πy

e−
y
2 =

1√
2πy

e−
y
2

Example

Distributions derived from the normal

� If z ∼ N [0, 1], then z2 ∼ χ2[1] with E[z2] = 1 and V [z2] = 2.

� If x1, ..., xn are n independent χ2[1] variables, then

n∑
i=1

xi ∼ χ2[n].
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Normal

Parameters µ ∈ R , σ ∈ R>0

Support x ∈ R

PDF ϕ
(
x−µ
σ

)
= 1

σ
√
2π
e−

1
2(

x−µ
σ )

2

CDF Φ
(
x−µ
σ

)
= 1

2

[
1 + erf

(
x−µ

σ
√
2

)]
Mean µ

Median µ

Mode µ

Variance σ2

Skewness 0

Ex. Kurtosis 0

MGF exp(µt+ σ2t2/2)

� PDF denotes probability density function, CDF cumulative distribution function,
MGF moment-generating function.

� µ mean (location), σ, s (scale).

� Excess Kurtosis is de�ned as Kurtosis minus 3.

� The Gauss error function is erf z = 2√
π

∫ z

0
e−t2 dt.

� If zi, i = 1, ..., n, are independent N [0, 1] variables, then

n∑
i=1

z2i ∼ χ2[n].

� If zi, i = 1, ..., n, are independent N [0, σ2] variables, then

n∑
i=1

(
zi
σ

)2

∼ χ2[n].

� If x1 and x2 are independent χ
2 variables with n1 and n2 degrees of freedom, then

x1 + x2 ∼ χ2[n1 + n2].
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2.3 The χ2 distribution

Random variable x ∼ χ2[n] is distributed according to the chi-squared distribution

with n degrees of freedom

f(x|n) = xn/2−1e−x/2

2n/2Γ
(
n
2

) ,

where Γ is the Gamma-distribution (more below).

� E[x] = n

� V [x] = 2n

The χ2 distribution

Example of a χ2[3] distribution:

For degrees of freedom greater than 30 the distribution of the chi-squared variable x is

approx.

z = (2x)1/2 − (2n− 1)1/2,

which is approximately standard normally distributed. Thus,

Prob(χ2[n] ≤ a) ≈ Φ[(2a)1/2 − (2n− 1)1/2].

Approximating a χ2
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χ2

Parameters n ∈ N>0

Support x ∈ R>0 if n = 1,

else x ∈ R≥0

PDF 1
2n/2Γ(n/2)

xn/2−1e−x/2

CDF 1
Γ(n/2)

γ
(
n
2
, x

2

)
Mean n

Median No simple closed form

Mode max(n− 2, 0)

Variance 2n

Skewness
√
8/n

Ex. Kurtosis 12
n

MGF (1− 2t)−n/2 for t < 1
2

� n, n1, n2 known as degrees of freedom.

� Regularized incomplete beta function I(x, a, b) = B(x, a,b)
B(a,b)

with B(x, a, b) =∫ x

0
ta−1 (1− t)b−1 dt.
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2.4 The F-distribution

If x1 and x2 are two independent chi-squared variables with degrees of freedom parameters

n1 and n2, respectively, then the ratio

F [n1, n2] =
x1/n1

x2/n2

has the F distribution with n1 and n2 degrees of freedom.

The F-distribution
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F

Parameters n1, n2 ∈ N>0

Support x ∈ R>0 if n1 = 1,

else x ∈ R≥0

PDF n
n1
2
1 n

n2
2
2

Γ(
n1+n2

2
)

Γ(
n1
2
)Γ(

n2
2
)

x
n1
2 −1

(n1x+n2)
n1+n2

2

CDF I
(

n1x
n1x+n2

, n1

2
, n2

2

)
Mean n2

n2−2
for n2 > 2

Median No simple closed form

Mode n1−2
n1

n2

n2+2
for n1 > 2

Variance
2n2

2 (n1+n2−2)

n1(n2−2)2(n2−4)
for n2 > 4

Skewness
(2n1+n2−2)

√
8(n2−4)

(n2−6)
√

n1(n1+n2−2)
for n2 > 6

Ex. Kurtosis 12n1(5n2−22)(n1+n2−2)+(n2−4)(n2−2)2

n1(n2−6)(n2−8)(n1+n2−2)
for n2 > 8

MGF does not exist

� n, n1, n2 known as degrees of freedom.

� Regularized incomplete beta function I(x, a, b) = B(x, a,b)
B(a,b)

with B(x, a, b) =∫ x

0
ta−1 (1− t)b−1 dt.
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2.5 The student t-distribution

If x1 is an N [0, 1] variable, often denoted by z, and x2 is χ
2[n2] and is independent of x1,

then the ratio

t[n2] =
x1√
x2/n2

.

has the t distribution with n2 degrees of freedom.

The student t-distribution

Example for the t distributions with 3 and 10 degrees of freedom with the standard

normal distribution.

Comparing (2.4) with n1 = 1 and (2.5), if t ∼ t[n], then t2 ∼ F [1, n].

The t[30] approx. the standard normal
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t

Parameters n ∈ R>0

Support x ∈ R

PDF
Γ( n+1

2 )
√
πn Γ( n

2 )

(
1 + x2

n

)− n+1
2

CDF 1
2

+ x Γ
(

n+1
2

)
×

2F1

(
1
2

, n+1
2

; 3
2

; − x2

n

)
√
πn Γ(n

2 )

Mean 0 for n > 1

Median 0

Mode 0

Variance n
n−2

for n > 2,

∞ for 1 < n ≤ 2

Skewness 0 for n > 3

Ex. Kurtosis 6
n−4

for n > 4,∞ for 2 < n ≤ 4

MGF does not exist

� n denote degrees of freedom.

� 2F1(·, ·; ·; ·) is a particular instance of the hypergeometric function.
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2.6 The lognormal distribution

The lognormal distribution, denoted LN [µ, σ2], has been particularly useful in mod-

eling the size distributions.

f(x) =
1√
2πσx

e−
1
2
[(lnx−µ)/σ]2 , x > 0

A lognormal variable x has

� E[x] = eµ+σ2/2, and

� V ar[x] = e2µ+σ2
(eσ

2 − 1).

The lognormal distribution

If y ∼ LN [µ, σ2], then ln y ∼ N [µ, σ2].
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Log-normal

Parameters µ ∈ R , σ ∈ R>0

Support x ∈ R>0

PDF 1
xσ

√
2π

exp
(
− (lnx−µ )2

2σ2

)
CDF 1

2

[
1 + erf

(
lnx−µ

σ
√
2

)]
= Φ

(
ln(x)−µ

σ

)
Mean exp

(
µ+ σ2

2

)
Median exp(µ)

Mode exp (µ− σ2)

Variance [exp(σ2)− 1] exp (2µ+ σ2)

Skewness [exp (σ2) + 2]
√

exp(σ2)− 1

Ex. Kurtosis 1 exp (4σ2) + 2 exp (3σ2) + 3 exp (2σ2)− 6

MGF not determined by its moments
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2.7 The gamma distribution

The general form of the gamma distribution is

f(x) =
βα

Γ(α)
e−βxxα−1, x ≥ 0, β = 1/θ > 0, α = k > 0.

The gamma distribution

Many familiar distributions are special cases, including the exponential distribution(α =

1) and chi-squared(β = 1/2, α = n/2). The Erlang distribution results if α is a posi-

tive integer. The mean is α/β, and the variance is α/β2. The inverse gamma distribution

is the distribution of 1/x, where x has the gamma distribution.
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Γ Γ

Parameters k > 0 ∈ R (shape), α > 0 ∈ R (shape),

θ > 0 ∈ R scale β > 0 ∈ R (rate)

Support x ∈ R(0,∞) x ∈ R(0,∞)

PDF f(x) = 1
Γ(k)θk

xk−1e−x/θ f(x) = βα

Γ(α)
xα−1e−βx

CDF F (x) = 1
Γ(k)

γ
(
k, x

θ

)
F (x) = 1

Γ(α)
γ(α, βx)

Mean kθ α
β

Median No simple closed form No simple closed form

Mode (k − 1)θ for k ≥ 1, 0 for k < 1 α−1
β

for α ≥ 1, 0 for α < 1

Variance kθ2 α
β2

Skewness 2√
k

2√
α

Ex. Kurtosis 6
k

6
α

MGF (1− θt)−k for t < 1
θ

(
1− t

β

)−α

for t < β

� Γ(z) =
∫∞
0

tz−1e−t dt, ℜ(z) > 0, for complex numbers with a positive real part.

� lower incomplete gamma function is γ(s, x) =
∫ x

0
ts−1 e−t dt, for complex numbers

with a positive real part.
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2.8 The beta distribution

For a variable constrained between 0 and c > 0, the beta distribution has proved useful.

Its density is

f(x) =
Γ(α + β)

Γ(α)Γ(β)

(x
c

)α−1 (
1− x

c

)β−1 1

c
, 0 ≤ x ≤ 1.

It is symmetric if α = β, asymmetric otherwise. The mean is ca/(α+β), and the variance

is c2αβ/[(α + β + 1)(α + β)2].

The beta distribution
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B

Parameters α, β ∈ R>0

Support x ∈ [0, 1] or x ∈ (0, 1)

PDF xα−1(1−x)β−1

B(α,β)

CDF I(x, α, β)

Mean α
α+β

Median I
[−1]
1
2

(α, β) ≈ α−1
3

α+β−2
3

for α, β > 1

Mode ∗

Variance αβ
(α+β)2(α+β+1)

Skewness 2 (β−α)
√
α+β+1

(α+β+2)
√
αβ

Ex. Kurtosis 6[(α−β)2(α+β+1)−αβ(α+β+2)]
αβ(α+β+2)(α+β+3)

MGF 1 +
∑∞

k=1

(∏k−1
r=0

α+r
α+β+r

)
tk

k!

� B(α, β) = Γ(α)Γ(β)
Γ(α+β)

and Γ is the Gamma function.

� Γ(z) =
∫∞
0

tz−1e−t dt, ℜ(z) > 0, for complex numbers with a positive real part.

� Regularized incomplete beta function I(x, a, b) = B(x, a,b)
B(a,b)

with B(x, a, b) =∫ x

0
ta−1 (1− t)b−1 dt.

�
∗ α−1
α+β−2

forα, β > 1; any value in(0, 1) for α, β = 1; {0, 1} (bimodal) for α, β <

1; 0 for α ≤ 1, β > 1; 1 for α > 1, β ≤ 1.
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2.9 The logistic distribution

The logistic distribution is an alternative if the normal cannot model the mass in the

tails; the cdf for a logistic random variable with µ = 0, s = 1 is

F (x) = Λ(x) =
1

1 + e−x
.

The density is f(x) = Λ(x)[1−Λ(x)]. The mean and variance of this random variable are

zero and σ2 = π2/3.

The logistic distribution
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Logistic

Parameters µ ∈ R , s ∈ R>0

Support x ∈ R
PDF λ

(
x−µ
s

)
= e−(x−µ)/s

s(1+e−(x−µ)/s)
2

CDF Λ
(
x−µ
s

)
= 1

1+e−(x−µ)/s

Mean µ

Median µ

Mode µ

Variance s2π2

3

Skewness 0

Ex. Kurtosis 6/5

MGF eµtB(1− st, 1 + st)

for t ∈ (−1/s, 1/s)

2.10 The Wishart distribution

The Wishart distribution describes the distribution of a random matrix obtained as

f(W ) =
n∑

i=1

(xi − µ)(xi − µ)′.

where xi is the ith of nK element random vectors from the multivariate normal distribu-

tion with mean vector, µ, and covariance matrix, Σ. The density of the Wishart random

matrix is

f(W ) =
exp

[
−1

2
trace(Σ−1W )

]
|W |− 1

2
(n−K−1)

2nK/2|Σ|K/2πK(K−1)/4
∏K

j=1 Γ
(
n+1−j

2

) .
The mean matrix is nΣ. For the individual pairs of elements in W ,

Cov[wij, wrs] = n(σirσjs + σisσjr).

The Wishart distribution is a multivariate extension of χ2 distribution. If W ∼ W (n, σ2),

then W /σ2 ∼ χ2[n].

The Wishart distribution
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3 Review of Distribution Theory

3.1 Joint and marginal bivariate distributions

Bivariate distributions

For observations of two discrete variables y ∈ {1, 2} and x ∈ {1, 2, 3}, we can calculate

� the frequencies nx,y,

freq. nx,y y = 1 y = 2 f(x) = nx/N

x = 1 1 2 3/10

x = 2 1 2 3/10

x = 3 0 4 4/10

f(y) = ny/N 2/10 8/10 1

� the frequencies nx,y,

� conditional distributions f(y|x) and f(x|y),

� joint distributions f(x, y), and

� marginal distributions fy(y) and fx(x).

freq. nx,y y = 1 y = 2 f(x) = nx/N cond. distr. f(y|x) y = 1 y = 2
∑

y

x = 1 1 2 3/10 f(y|x = 1) 1/3 2/3 1

x = 2 1 2 3/10 f(y|x = 2) 1/3 2/3 1

x = 3 0 4 4/10 f(y|x = 3) 0 1 1

f(y) = ny/N 2/10 8/10 1 f(y|x = 1, x = 2, x = 3) 1/5 4/5 1

cond. distr. joint distr. marginal pr.

f(x|y) f(x|y = 1) f(x|y = 2) f(x|y = 1, y = 2) f(x, y) f(x, y = 1) f(x, y = 2) fx(x)

x = 1 1/2 1/4 3/10 f(x = 1, y) 1/10 2/10 3/10

x = 2 1/2 1/4 3/10 f(x = 2, y) 1/10 2/10 3/10

x = 3 0 1/2 4/10 f(x = 3, y) 0 4/10 4/10∑
x 1 1 1 marginal pr. fy(y) 2/10 8/10 1
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3.2 The joint density function

Two random variables X and Y have joint density function

� if x and y are discrete

f(x, y) = Prob(a ≤ x ≤ b, c ≤ y ≤ d) =
∑

a≤x≤b

∑
c≤y≤d

f(x, y)

� if x and y are continuous

f(x, y) = Prob(a ≤ x ≤ b, c ≤ y ≤ d) =

∫ b

a

∫ d

c

f(x, y)dxdy

The joint density function

With a = 1, b = 2, c = 2, d = 2 and the following f(x, y)

joint distr.

f(x, y) f(x, y = 1) f(x, y = 2)

f(x = 1, y) 1/10 2/10

f(x = 2, y) 1/10 2/10

f(x = 3, y) 0 4/10

Prob(1 ≤ x ≤ 2, 2 ≤ y ≤ 2) = f(y = 2, x = 1) + f(y = 2, x = 2) = 2/5.

Example

For values x and y of two discrete random variable X and Y , the probability dis-

tribution

f(x, y) = Prob(X = x, Y = y).

The axioms of probability require

f(x, y) ≥ 0,∑
x

∑
y

f(x, y) = 1.
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If X and Y are continuous, ∫
x

∫
y

f(x, y)dxdy = 1.

The bivariate normal distribution is the joint distribution of two normally distributed

variables. The density is

f(x, y) =
1

2πσxσy

√
1− ρ2

e−1/2[(ϵ2x+ϵ2y−2ρϵxϵy)/(1−ρ2)],

where ϵx = x−µx

σx
, and ϵy =

y−µy

σy
.

bivariate normal distribution

3.3 The joint cumulative density function

The probability of a joint event of X and Y have joint cumulative density function

� if x and y are discrete

F (x, y) = Prob(X ≤ x, Y ≤ y) =
∑
X≤x

∑
Y≤y

f(x, y)

� if x and y are continuous

F (x, y) = Prob(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
f(t, s)dsdt

The joint cumulative density function.
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With x = 2, y = 2 and the following f(x, y)

f(x, y) f(x, y = 1) f(x, y = 2)

f(x = 1, y) 1/10 2/10

f(x = 2, y) 1/10 2/10

f(x = 3, y) 0 4/10

Prob(X ≤ 2, Y ≤ 2) = f(x = 1, y = 1)+

f(x = 2, y = 1) + f(x = 1, y = 2) + f(x =

2, y = 2) = 3/5.

Example

For values x and y of two discrete random variableX and Y , the cumulative probability

distribution

F (x, y) = Prob(X ≤ x, Y ≤ y).

Cumulative probability distribution

The axioms of probability require

0 ≤ F (x, y) ≤ 1,

F (∞,∞) = 1,

F (−∞, y) = 0,

F (x,−∞) = 0.

The marginal probabilities can be found from the joint cdf

fx(x) = P (X ≤ x) = Prob(X ≤ x, Y ≤ ∞) = F (x,∞).

41



3.4 The marginal probability density

To obtain the marginal distributions fx(x) and fy(y) from the joint density f(x, y), it is

necessary to sum or integrate out the other variable. For example,

� if x and y are discrete

fx(x) =
∑
y

f(x, y),

� if x and y are continuous

fx(x) =

∫
y

f(x, s)ds.

The marginal probability density

f(x, y) f(x, y = 1) f(x, y = 2) fx(x)

f(x = 1, y) 1/10 2/10 3/10

f(x = 2, y) 1/10 2/10 3/10

f(x = 3, y) 0 4/10 4/10

fy(y) 2/10 8/10 1

fx(x = 1) = f(x = 1, y = 1) + f(x = 1, y = 2) = 3/10.

fy(y = 2) = f(x = 1, y = 2) + f(x = 2, y = 2) + f(x = 3, y = 2) = 4/5.

Example
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The bivariate normal distribution

Why do we care about marginal distributions?

Means, variances, and higher moments of the variables in a joint distribution are de�ned

with respect to the marginal distributions.

� Expectations

If x and y are discrete

E[x] =
∑
x

xfx(x) =
∑
x

x

[∑
y

f(x, y)

]
=

∑
x

∑
y

xf(x, y).

If x and y are continuous

E[x] =

∫
x

xfx(x) =

∫
x

∫
y

xf(x, y)dydx.

� Variances

V ar[x] =
∑
x

(x− E[x])2fx(x) =
∑
x

∑
y

(x− E[x])2f(x, y).
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3.5 Covariance and correlation

For any function g(x, y),

E[g(x, y)] =


∑

x

∑
y g(x, y)f(x, y) in the discrete case,

∫
x

∫
y
g(x, y)f(x, x)dydx in the continuous case.

The covariance of x and y is a special case:

Cov[x, y] = E[(x− µx)(y − µy)]

= E[xy]− µxµy = σxy

If x and y are independent, then f(x, y) = fx(x)fy(y) and

σxy =
∑
x

∑
y

fx(x)fy(y)(x− µx)(y − µy)

=
∑
x

(x− µx)fx(x)
∑
y

(y − µy)fy(y) = E[x− µx]E[y − µy] = 0.

� correlation ρxy =
σxy

σxσy

� σxy = 0 does not imply independence (except for bivariate normal).

� Two random variables are statistically independent if and only if their joint density

is the product of the marginal densities:

f(x, y) = fx(x)fy(y) ⇔ x and y are independent.

� If (and only if) x and y are independent, then the marginal cdfs factors the cdf as

well:

F (x, y) = Fx(x)Fy(y) = Prob(X ≤ x, Y ≤ y) = Prob(X ≤ x)Prob(Y ≤ y).

Independence: Pdf and cdf from marginal densities
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f(x, y) f(x, y = 1) f(x, y = 2) fx(x)

f(x = 1, y) 1/6 1/6 1/3

f(x = 2, y) 1/6 1/6 1/3

f(x = 3, y) 1/6 1/6 1/3

fy(y) 1/2 1/2 1

fx(x = 3)× fy(y = 2) = 1/3× 1/2 = 1/6.

F (x, y) F (x, y = 1) F (x, y = 2)

F (x = 1, y) 1/6 2/6

F (x = 2, y) 2/6 4/6

F (x = 3, y) 3/6 1

P (x ≤ 2)P (y ≤ 2)

= [f(x = 2, y = 1) + f(x = 2, y = 2)]

× [f(x = 1, y = 2) + f(x = 2, y = 2)]

= [1/6 + 1/6][1/6 + 1/6] = 4/36 = 2/18.

Example

3.6 The conditional density function

The conditional distribution over y for each value of x (and vice versa) has conditional

densities

f(y|x) = f(x, y)

fx(x)
f(x|y) = f(x, y)

fy(y)
.

The conditional density function

The marginal distribution of x averages the probability of x given y over the distri-

bution of all values of y fx(x) = E[f(x|y)f(y)]. If x and y are independent, knowing the

value of y does not provide any information about x, so fx(x) = f(x|y).

cond. distr. joint distr. marginal pr.

f(x|y) f(x|y = 1) f(x|y = 2) f(x|y = 1, y = 2) f(x, y) f(x, y = 1) f(x, y = 2) fx(x)

x = 1 1/2 1/4 3/10 f(x = 1, y) 1/10 2/10 3/10

x = 2 1/2 1/4 3/10 f(x = 2, y) 1/10 2/10 3/10

x = 3 0 1/2 4/10 f(x = 3, y) 0 4/10 4/10∑
x 1 1 1 marginal pr. fy(y) 2/10 8/10 1

Example
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f(x = 3|y = 2) =
f(x = 3, y = 2)

fy(y = 2)
= 4/10× 10/8 = 1/2.

fx(x = 2) = Ey[f(x = 2|y)f(y)] = f(x = 2|y = 1)f(y = 1) + f(x = 2|y = 2)f(y = 2)

= 1/2× 2/10 + 1/4× 8/10 = 1/10 + 2/10 = 3/10.

3.7 Conditional mean aka regression

A random variable may always be written as

y = E[y|x] + (y − E[y|x])

= E[y|x] + ϵ.

The regression of y on x is obtained from the conditional mean

E[y|x] =


∑

y yf(y|x) if y is discrete,

∫
y
yf(y|x)dy if y is continuous.

De�nition

Predict y at values of x:∑
y

yf(y|x = 1) = 1× 1/3 + 2× 2/3 = 5/3.
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A conditional variance is the variance of the conditional distribution:

V ar[y|x] =


∑

y (y − E[y|x])2 f(y|x) if y is discrete,

∫
y
(y − E[y|x])2 f(y|x)dy, if y is continuous.

The computation can be simpli�ed by using

V ar[y|x] = E[y2|x]− (E[y|x])2 ≥ 0.

Decomposition of variance V ar[y] = Ex[V ar[y|x]] + V arx[E[y|x]]

Conditional variance

� When we condition on x, the variance of y reduces on average. V ar[y] ≥ Ex[V ar[y|x]]

� Ex[V ar[y|x]] is the average of variances within each x

� V arx[E[y|x]] is variance between y averages in each x.

� E[y|x = 1] = 1.67, E[y|x = 2] = 1.67, and E[y|x = 3] = 2

� V [y|x = 1] = 0.22, V [y|x = 2] = 0.22, and V [y|x = 3] = 0
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f(y|x) y = 1 y = 2

f(y|x = 1) 1/3 2/3 1

f(y|x = 2) 1/3 2/3 1

f(y|x = 3) 0 1 1

E[y|x = 1] = 1/3×1+2/3×2 = 5/3

E[y|x = 2] = 1/3×1+2/3×2 = 5/3

E[y|x = 3] = 0× 1 + 1× 2 = 2

f(x, y) f(x, y = 1) f(x, y = 2) fx(x)

f(x = 1, y) 1/10 2/10 3/10

f(x = 2, y) 1/10 2/10 3/10

f(x = 3, y) 0 4/10 4/10

fy(y) 2/10 8/10 1

V [y|x = 1] = 12 × 1/3 + 22 × 2/3− (5/3)2 = 2/9

V [y|x = 2] = 12 × 1/3 + 22 × 2/3− (5/3)2 = 2/9

V [y|x = 3] = 12 × 0 + 22 × 1− 22 = 0

alternatively (requiring more di�erences)

V [y|x = 1] = (1−5/3)2×1/3+(2−5/3)2×2/3 = 2/9

Example

Average of variances within each x, E[V [y|x]] is less or equal total variance V [y].

� Use the conditional mean to calculate E[y]:

E[y] = Ex[E[y|x]] = E[y|x = 1]f(x = 1)+E[y|x = 2]f(x = 2)+E[y|x = 3]f(x = 3)

= 5/3× 3/10 + 5/3× 3/10 + 2× 4/10 = 9/5.

E[y] =
∑
y

fy(y) = 1× 2/10 + 2× 8/10 = 9/5.

� Variation in y, V [y|x = 1] = 0.22, V [y|x = 2] = 0.22, and V [y|x = 3] = 0 due to

variation in x, is on average

E[V [y|x]] = 3/10× 2/9 + 3/10× 2/9 + 4/10× 0 = 2/15.

� For each conditional mean E[y|x = 1] = 5/3, E[y|x = 2] = 5/3, and E[y|x = 3] = 2,

y varies with

V [E[y|x]] = E[(E[y|x])2]− (E[y|x])2 = 3/10× (5/3)2+3/10× (5/3)2+4/10× (2)2−
(9/5)2 = 2/75.

Example
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� E[V [y|x]] + V [E[y|x]] = V [y] = 2/75 + 2/15 = 4/25.

With degree of freedom correction (n− 1) (as reported in software):

E[V [y|x]] + V [E[y|x]] = V [y] = 2/75/(10− 1)× 10 + 2/15/(10− 1)× 10 = 8/45.

3.8 The bivariate normal

Properties of the bivariate normal

Recall bivariate normal distribution is the joint distribution of two normally distributed

variables. The density is

f(x, y) =
1

2πσxσy

√
1− ρ2

e−1/2[(ϵ2x+ϵ2y−2ρϵxϵy)/(1−ρ2)],

where ϵx = x−µx

σx
, and ϵy =

y−µy

σy
.

The covariance is σxy = ρxyσxσy, where

� −1 < ρxy < 1 is the correlation between x and y

� µx, σx, µy, σy are means and standard deviations of the marginal distributions of x

or y

If x and y are bivariately normally distributed (x, y) ∼ N2[µx, µy, σ
2
x, σ

2
y, ρxy]

� the marginal distributions are normal

fx(x) = N [µx, σ
2
x]

fy(y) = N [µy, σ
2
y]

� the conditional distributions are normal

f(y|x) = N [α + βx, σ2
y(1− ρ2)]

α = µy − βµx; β =
σxy

σ2
x

� f(x, y) = fx(x)fx(x) if ρxy = 0: x and y are independent if and only if they are

uncorrelated
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3.9 Useful rules

� ρxy =
σxy

σxσy

� E[ax+ by + c] = aE[x] + bE[y] + c

� V ar[ax+ by + c] = a2V ar[x] + b2V ar[y] + 2abCov[x, y] = V ar[ax+ by]

� Cov[ax+ by, cx+ dy] = acV ar[x] + bdV ar[y] + (ad+ bc)Cov[x, y]

� If X and Y are uncorrelated, then V ar[x+ y] = V ar[x− y] = V ar[x] + V ar[y].

� Linearity

E[ax+ by|z] = aE[x|z] + bE[y|z].

� Adam's Law / Law of Iterated Expectation

E[y] = Ex[E[y|x]]

� Adam's general Law / Law of Iterated Expectation

E[y|g2(g1(x))] = E[E[y|g1(x)]|g2(g1(x))]

� Independence

If x and y are independent, then

E[y] = E[y|x],

E[g1(x)g2(y)] = E[g1(x)]E[g2(y)].

� Taking out what is known

E[g1(x)g2(y)|x] = g1(x)E[g2(y)|x].

� Projection of y by E[y|x], such that orthogonal to h(x)

E[(y − E[y|x])h(x)] = 0.

� Keeping just what is needed (y predictable from x needed, not residual)

E[xy] = E[xE[y|x]].
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� Eve's Law (EVVE) / Law of Total Variance

V ar[y] = Ex[V ar[y|x]] + V arx[E[y|x]]

� ECCE law / Law of Total Covariance

Cov[x, y] = Ez[Cov[y, x|z]] + Covz[E[x|z], E[y|z]]

� Cov[x, y] = Covx[x,E[y|x]] =
∫
x
(x− E[x])E[y|x]fx(x)dx.

� If E[y|x] = α + βx, then α = E[y]− βE[x] and β = Cov[x,y]
V ar[x]

� Regression variance V arx[E[y|x]], because E[y|x] varies with x

� Residual variance Ex[V ar[y|x]] = V ar[y] − V arx[E[y|x]], because y varies around

the conditional mean

� Decomposition of variance V ar[y] = V arx[E[y|x]] + Ex[V ar[y|x]]

� Coe�cient of determination = regression variance

total variance

� If E[y|x] = α + βx and if V ar[y|x] is a constant, then

V ar[y|x] = V ar[y]
(
1− Corr2[y, x]

)
= σ2

y

(
1− σ2

xy

)
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4 The Least Squares Estimator

4.1 What is the Relationship between Two Variables?

Political Connections and Firms

Firm pro�ts increase with the degree of political connections

� Learn how to represent relationships between two or more variables

� How to quantify and predict e�ects of shocks and policy changes

� Show properties of the OLS estimator in small & large samples

� Apply Monte Carlo Simulations to assess properties of OLS
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4.2 The Econometric Model

Speci�cation of a Linear Regression

� dependent variable yi = pro�ts of �rm i

� explanatory variables xi1, . . . , xiK k = 1, . . . K political connections, other �rm char-

acteristics

� xi0 = 1 is a constant

� parameters to be estimated β0, β1, . . . , βK are K + 1

� ui is called the error term

yi = (β0 = 4) + (β1 = 0)xi1 + ui.

� dependent variable yi = pro�ts of �rm i

� explanatory variables xi1, . . . , xiK k = 1, . . . K political connections, other �rm char-

acteristics

� xi0 = 1 is a constant

� parameters to be estimated β0, β1, . . . , βK are K + 1
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� ui is called the error term

yi = (β0 = 2.36) + (β1 = 0.01)xi1 + ui.

How Were the Data Generated?

The data generating process is fully described by a set of assumptions.

The Five Assumptions of the Econometric Model

� LRM1: Linearity

� LRM2: Simple random sampling

� LRM3: Exogeneity

� LRM4: Error variance

� LRM5: Identi�ability
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Data Generating Process: Linearity

yi = β0 + β1xi1 + . . .+ βKxiK + ui and E(ui) = 0.

LRM1: Linearity

LRM1 assumes that the

� functional relationship is linear in parameters βk

� error term ui enters additively

� parameters βk are constant across individual �rms i and j ̸= i.

Anscombe's Quartet

Figure 1: All four sets are identical when examined using linear statistics, but very
di�erent when graphed. Correlation between x and y is 0.816. Linear Regression y = 3.00
+ 0.50x.
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Data Generating Process: Random Sampling

{xi1, . . . , xiK , yi}Ni=1 i.i.d. (independent and identically distributed)

LRM2: Simple Random Sampling

LRM2 means that

� observation i has no information content for observation j ̸= i

� all observations i come from the same distribution

This assumption is guaranteed by simple random sampling provided there is no systematic

non-response or truncation.

Density of Population and Truncated Sample

Figure 2: Distribution of a dependent variable and an independent variable truncated at
y∗ = 15.
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Data Generating Process: Exogeneity

1. ui|xi1, . . . , xiK ∼ N(0, σ2
i )

LRM3a assumes that the error term is normally distributed conditional on the

explanatory variables.

2. ui ⊥ xik ∀k (independent), pdfu,x(uixik) = pdfu(ui)pdfx(xik)

LRM3b means that the error term is independent of the explanatory variables.

3. E(ui|xi1, . . . , xiK) = E(ui) = 0 (mean independent)

LRM3c states that the mean of the error term is independent of explanatory vari-

ables.

4. cov(xik, ui) = 0 ∀k (uncorrelated)

LRM3d means that the error term and the explanatory variables are uncorrelated.

LRM3: Exogeneity

LRM3a or LRM3b imply LRM3c and LRM3d. LRM3c implies LRM3d.

Figure 3: Distributions of the dependent variable conditional on values of an independent
variable.

Weaker exogeneity assumption if interest only in, say, xi1:

Conditional Mean Independence E(ui|xi1, xi2, . . . , xiK) = E(ui|xi2, . . . , xiK)

Given the control variables xi2, . . . , xiK , the mean of ui does not depend on the variable

of interest xi1.
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Data Generating Process: Error Variance

1.

V (ui|xi1, . . . , xiK) = σ2 < ∞ (homoskedasticity)

LRM4a means that the variance of the error term is a constant.

2.

V (ui|xi1, . . . , xiK) = σ2
i = g(xi1, . . . , xiK) < ∞ (cond. heteroskedasticity)

LRM4b allows the variance of the error term to depend on a function g of the

explanatory variables.

LRM4: Error Variance

Heteroskedasticity

Figure 4: The simple regression model under homo- and heteroskedasticity.
V ar(profits|lobbying, employees) increasing with lobbying.
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Data Generating Process: Identi�ability

(xi0, xi1, . . . , xiK) are not linearly dependent

0 < V (xik) < ∞ ∀k > 0

LRM5: Identi�ability

LRM5 assumes that

� the regressors are not perfectly collinear, i.e. no variable is a linear combination of

the others

� all regressors (but the constant) have strictly positive variance both in expectations

and in the sample and not too many extreme values.

LRM5 means that every explanatory variable adds additional information.

The Identifying Variation from xik

Figure 5: The number of red and blue dots is the same. Using which would you get a
more accurate regression line?
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4.3 Estimation with OLS

Ordinary least squares (OLS) minimizes the squared distances (SD) between the

observed and the predicted dependent variable y:

min
β0,...,βK

SD(β0, . . . , βK),

where SD =
N∑
i=1

[yi − (β0 + β1xi1 + . . .+ βKxiK)]
2.

How to Describe the Relationship Best?
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Invention of OLS

Legendre to Jacobi (Paris, 30 Novem-

ber 1827, Plackett, 1972): �...How can Mr.

Gauss have dared to tell you that the greater

part of your theorems were known to him...?

... this is the same man ... who wanted

to appropriate in 1809 the method of least

squares published in 1805.

� Other examples will be found in other

places, but a man of honour should refrain

from imitating them.�

Figure 6: Watercolor caricature of Legendre
by Boilly (1820), the only existing portrait
known.

Invention of OLS

Legendre to Jacobi (Paris, 30 Novem-

ber 1827, Plackett, 1972): �...How can Mr.

Gauss have dared to tell you that the greater

part of your theorems were known to him...?

... this is the same man ... who wanted

to appropriate in 1809 the method of least

squares published in 1805.

� Other examples will be found in other

places, but a man of honour should refrain

from imitating them.�

Figure 7: Portrait of Gauss by Jensen
(1840).

Estimation with OLS

For the bivariate regression model, the OLS estimators of β0 and β1 are

β̂0 = ȳ − β̂1x̄

β̂1 =

∑N
i=1 (xi1 − x̄)(yi − ȳ)∑N

i=1 (xi1 − x̄)2
=

cov(x, y)

var(x)

β̂1 = cov(x, y)/(sxsx) = Rsy/sx,
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where R ≡ cov(x, y)/(sxsy) is Pearson's correlation coe�cient with sz denoting the

standard deviation of z.

OLS estimator Measures Linear Correlation

Equivalently,

R = sx/syβ̂1 =
β̂1

∑N
i=1 (xi1 − x̄)∑N
i=1 (yi − ȳ)

=

∑N
i=1 (β̂1xi1 − β̂1x̄)∑N

i=1 (yi − ȳ)
.

Squaring gives

R2 =

∑N
i=1 (ŷi − ȳ)2∑N
i=1 (yi − ȳ)2

= 1−
∑N

i=1 û
2
i∑N

i=1 (yi − ȳ)2
.

R2 as measure of the goodness of �t:

The �t improves with the fraction of the sample variation in y that is explained by the x.

The Case with K Explanatory Variables

The more general case with K explanatory variables is

β̂
(K+1)×1

= (X ′X)−1

(K+1)×(K+1)

X ′
(K+1)×N

y
N×1

Given the OLS estimator, we can predict the

� dependent variable by ŷi = β̂0 + β̂1xi1 + . . .+ β̂KxiK

� the error term by ûi = yi − ŷi.

ûi is called the residual.

Adjusted R2 = 1− N−1
N−K−1

∑N
i=1 û

2
i∑N

i=1 (yi−ȳ)2
.
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Figure 8: Scatter cloud visualized with
GRAPH3D for Stata.

Figure 9: OLS surface visualized with
GRAPH3D for Stata.
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4.4 Properties of the OLS Estimator in the Small and in the

Large

Properties of the OLS Estimator

� Small sample properties of β̂

� unbiased

� normally distributed

� e�cient

� Large sample properties of β̂

� consistent

� approx. normal

� asymptotically e�cient
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Small Sample Properties

Figure 10: What is a small sample? Source:
Familien-Duell Grundy
Light Entertainment.

Figure 11: What is a small sample? (Wooldridge, 2009, p. 755): �But large sample
approximations have been known to work well for sample sizes as small as N = 20.�
Source: Familien-Duell Grundy Light Entertainment.
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Unbiasedness and Normality of β̂k

Assuming LRM1, LRM2, LRM3a, LRM4, and LRM5,

the following properties can be established even for small samples.

� The OLS estimator of β is unbiased.

E(β̂k|x11, . . . , xNK) = βk.

� The OLS estimator is (multivariate) normally distributed.

β̂k|x11, . . . , xNK ∼ N(βk, V (β̂k)).

� Under homoskedasticity (LRM4a)

the variance V̂ (β̂k|x11, . . . , xNK) can be unbiasedly estimated.

Variance of β̂k and E�ciency

� For the bivariate regression model, it is estimated as

V̂ =
σ̂2∑N

i=1 (xi − x̄)2
with

σ̂2 =

∑N
i=1 û

2
i

N −K − 1
.

� Gauÿ-Markov-Theorem: under homoskedasticity (LRM4a)

β̂k is the BLUE (best linear unbiased estimator, e.g., non-linear least squares bi-

ased).

� V̂ (β̂k) in�ates with

� micronumerosity (small sample size)

� multicollinearity (high (but not perfect) correlation between two or more of

the independent variables).

Unbiasedness

� The OLS estimator of β is unbiased.

Plug y = Xβ+u into the formula for β̂ and then use the law of iterated expectation

to �rst take expectation with respect to u conditional on X and then take the

unconditional expectation:

E[ β̂] = EX,u

[
(X ′X)−1X ′(Xβ + u)

]
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= β + EX,u

[
(X ′X)−1X ′u

]
= β + EX

[
Eu|X

[
(X ′X)−1X ′u|X

]]
= β + EX

[
(X ′X)−1X ′Eu|X [u|X]

]
= β,

where E[u|X] = 0 by assumptions of the model.

Variance

� The OLS estimator β has variance V̂ (β̂k|x11, . . . , xNK) = σ2(X ′X)−1

Let σ2I denote the covariance matrix of u. Then,

E[ (β̂ − β)(β̂ − β)′] = E
[
((X ′X)−1X ′u)((X ′X)−1X ′u)′

]
= E

[
(X ′X)−1X ′uu′X(X ′X)−1

]
= E

[
(X ′X)−1X ′σ2X(X ′X)−1

]
= E

[
σ2(X ′X)−1X ′X(X ′X)−1

]
= σ2(X ′X)−1,

where we used the fact that β̂−β is just an a�ne transformation of u by the matrix

(X ′X)−1X ′.

Estimator for Variance

For a simple linear regression model, where β = [β0, β1]
′ (β0 is the y-intercept and β1 is

the slope), one obtains

σ2(X ′X)−1 = σ2
(∑

xix
′
i

)−1

= σ2
(∑

(1, xi)
′(1, xi)

)−1

= σ2

∑ 1xi

xix
2
i

−1

= σ2

 N
∑

xi∑
xi

∑
x2
i

−1
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= σ2 · 1

N
∑

x2
i − (

∑
xi)2

∑
x2
i −

∑
xi

−
∑

xiN



= σ2 · 1

N
∑N

i=1 (xi − x̄)2

∑
x2
i −

∑
xi

−
∑

xiN


V ar(β1) =

σ2∑N
i=1 (xi − x̄)2

.

Parameter Values for Simulations

Monte Carlo Simulations show the distribution of the estimate. Suppose the data

generating process is

yi = β0 + β1xi1 + ui.

� β0 = 2.00

� β1 = 0.5

� ui ∼ N(0.00, 1.00)

� N = 3, N = 5, N = 10,

N = 25, N = 100, N = 1000

Try it yourself...
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How to Establish Asymptotic Properties of β̂k?

Law of Large Numbers

As N increases, the distribution of β̂k becomes more tightly centered around βk.

(a) N=3 (b) N=5

(c) N=10 (d) N=100
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Central Limit Theorem

As N increases, the distribution of β̂k becomes normal (starting from a t-distribution).

(a) N=3 (b) N=5

(c) N=10 (d) N=100

Consistency, Asymptotically Normality

Assuming LRM1, LRM2, LRM3d, LRM4a or LRM4b, and LRM5 the following properties

can be established using law of large numbers and central limit theorem for large samples.

� The OLS estimator is consistent:

plimβ̂k = βk.

That is, for all ε > 0

lim
N→∞

Pr
(
|β̂k − βk| > ε

)
= 0.

� The OLS estimator is asymptotically normally distributed

√
N(β̂k − βk)

d→ N(0, Avar(β̂k)×N)
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(Avar means asymptotic variance)

� The OLS estimator is approximately normally distributed

β̂k
A∼ N

(
βk, Avar(β̂k)

)
E�ciency and Asymptotic Variance

For the bivariate regression under LRM4a (homoskedasticity) it can be consistently

estimated as

Âvar(β̂1) =
σ̂2∑N

i=1 (xi1 − x̄)2
,

with

σ̂2 =

∑N
i=1 û

2
i

N − 2
.

Under LRMb (heteroskedasticity), Avar(β̂) can be consistently estimated as the

robust or Eicker-Huber-White estimator.

The robust variance estimator is calculated as

Âvar(β̂1) =

∑N
i=1 û

2
i (xi1 − x̄)2[∑N

i=1 (xi1 − x̄)2
] .

Note: In practice we can almost never be sure that the errors are homoskedastic and

should therefore always use robust standard errors.

Sketch of Proof for Asymptotic Properties

� The OLS estimator of β̂ is consistent and asymptotic normal

Estimator β̂ can be written as: β̂ =
(

1
N
X ′X

)−1 1
N
X ′y = β +

(
1
N
X ′X

)−1 1
N
X ′u =

β +

(
1
N

∑N
i=1 xix

′
i

)−1(
1
N

∑N
i=1 xiui

)
We can use the law of large numbers to establish that : 1

N

∑N
i=1 xix

′
i

p−→ E[xix
′
i] =

Qxx

N
, 1

N

∑N
i=1 xiui

p−→ E[xiui] = 0

By Slutsky's theorem and continuous mapping theorem these results can be com-

bined to establish consistency of estimator β̂: β̂
p−→ β +Q−1

xx · 0 = β

The central limit theorem tells us that: 1√
N

∑N
i=1 xiui

d−→ N
(
0, V

)
, where V =

Var[xiui] = E[u2
ixix

′
i ] = E

[
E[u2

i |xi] xix
′
i

]
= σ2Qxx

N
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Applying Slutsky's theorem again we'll have:

√
N(β̂ − β) =

(
1

N

N∑
i=1

xix
′
i

)−1(
1√
N

N∑
i=1

xiui

)
d−→Q−1

xxN · N
(
0, σ2Qxx

N

)
= N

(
0, σ2Q−1

xxN
)

OLS Properties in the Small and in the Large

Set of assumptions (1) (2) (3) (4) (5) (6)

LRM1: linearity f u l f i l l e d

LRM2: simple random sampling f u l f i l l e d

LRM5: identi�ability f u l f i l l e d

LRM4: error variance

- LRM4a: homoskedastic ✓ ✓ ✓ × × ×

- LRM4b: heteroskedastic × × × ✓ ✓ ✓

LRM3: exogeneity

- LRM3a: normality ✓ × × ✓ × ×

- LRM3b: independent ✓ ✓ × × × ×

- LRM3c: mean indep. ✓ ✓ ✓ ✓ ✓ ×

- LRM3d: uncorrelated ✓ ✓ ✓ ✓ ✓ ✓

Small sample properties of β̂

- unbiased ✓ ✓ ✓ ✓ ✓ ×

- normally distributed ✓ × × ✓ × ×

- e�cient ✓ ✓ ✓ × × ×

Large sample properties of β̂

- consistent ✓ ✓ ✓ ✓ ✓ ✓

- approx. normal ✓ ✓ ✓ ✓ ✓ ✓

- asymptotically e�cient ✓ ✓ ✓ × × ×

� Notes: ✓ = ful�lled, × = violated
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Tests in Small Samples I

Assume LRM1, LRM2, LRM3a, LRM4a, and LRM5. A simple null hypotheses of the

form H0 : βk = q is tested with the t-test.

If the null hypotheses is true, the t-statistic

t =
β̂k − q

ŝe(β̂k)
∼ tN−K−1

follows a t-distribution with N − K − 1 degrees of freedom. The standard error is

ŝe(β̂k) =

√
V̂ (β̂k).

For example, to perform a two-sided test of H0 against the alternative hypotheses

HA : βk ̸= q on the 5% signi�cance level, we calculate the t-statistic and compare its

absolute value to the 0.975-quantile of the t-distribution. With N = 30 and K = 2, H0 is

rejected if |t| > 2.052.

Tests in Small Samples II

A null hypotheses of the form H0 : rj1β1+ . . .+rjKβK = qj, in matrix notation H0 : Rβ =

q, with J linear restrictions j = 1 . . . J is jointly tested with the F -test.

If the null hypotheses is true, the F -statistic follows an F distribution with J numer-

ator degrees of freedom and N −K − 1 denominator degrees of freedom:

F =

(
Rβ̂ − q

)′ [
RV̂ (β̂|X)R′

]−1 (
Rβ̂ − q

)
J

∼ FJ,N−K−1.

For example, to perform a two-sided test of H0 against the alternative hypotheses

HA : rj1β1 + . . . + rjKβK ̸= qj for all j at the 5% signi�cance level, we calculate the

F -statistic and compare it to the 0.95-quantile of the F -distribution.

With N = 30, K = 2 and J = 2, H0 is rejected if F > 3.35. We cannot perform two-sided

F -tests because the F distribution has one tail.

Tests in Small Samples III

Only under homoskedasticity (LRM4a), the F -statistic can also be computed as

F =
(R2 −R2

restricted)/J

(1−R2)/(N −K − 1)
∼ FJ,N−K−1,

where R2
restricted is estimated by restricted least squares which minimizes SD(β) s.t. rj1β1+

. . .+ rjKβK ̸= qj for all j.
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Exclusionary restrictions of the form H0 : βk = 0, βm = 0, . . . are a special case of

H0 : rj1β1 + . . . + rjKβK = qj for all j. In this case, restricted least squares is simply

estimated as a regression were the explanatory variables k,m, . . . are excluded, e.g. a

regression with a constant only.

If the F distribution has degrees of freedom (df) 1 as the numerator df, and N −K − 1

as the denominator df, then it can be shown that t2 = F (1, N −K − 1).

Con�dence Intervals in Small Samples

Assuming LRM1, LRM2, LRM3a, LRM4a, and LRM5, we can construct con�dence in-

tervals for a particular coe�cient βk. The (1− α) con�dence interval is given by

(
β̂k − t(1−α/2),(N−K−1)ŝe(β̂k), β̂k + t(1−α/2),(N−K−1)ŝe(β̂k)

)
,

where t(1−α/2),(N−K−1) is the (1 − α/2) quantile of the t-distribution with (N − K − 1)

degrees of freedom. For example, the 95% con�dence interval with N = 30 and K = 2 is(
β̂k − 2.052ŝe(β̂k), β̂k + 2.052ŝe(β̂k)

)
.

Recall: α is the maximum acceptable probability of a Type I error.

Null hypothesis (H0) is valid (Innocent) is invalid (Guilty)

Reject H0 Type I (α = 0.05) error Correct outcome

I think he is guilty! False positive True positive

Convicted! Convicted!

Don't reject H0 Correct outcome Type II (β) error

I think he is innocent! True negative False negative

Freed! Freed!

Asymptotic Tests

Assume LRM1, LRM2, LRM3d, LRM4a or LRM4b, and LRM5. A simple null hypotheses

of the form H0 : βk = q is tested with the z-test. If the null hypotheses is true, the z-

statistic

z =
β̂k − q

ŝe(β̂k)

A∼ N(0, 1)
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follows approximately the standard normal distribution. The standard error is ŝe(β̂k) =√
Âvar(β̂k).

For example, to perform a two sided test of H0 against the alternative hypotheses

HA : βk ̸= q on the 5% signi�cance level, we calculate the z-statistic and compare its

absolute value to the 0.975-quantile of the standard normal distribution. H0 is rejected if

|z| > 1.96.

We talk about the Wald test later...

Con�dence Intervals in Large Samples

Assuming LRM1, LRM2, LRM3d, LRM5, and LRM4a or LRM4b, we can construct

con�dence intervals for a particular coe�cient βk. The (1−α) con�dence interval is given

by

(
β̂k − z(1−α/2)ŝe(β̂k), β̂k + z(1−α/2)ŝe(β̂k)

)
where z(1−α/2) is the (1− α/2) quantile of the standard normal distribution.

For example, the 95% con�dence interval is
(
β̂k − 1.96ŝe(β̂k), β̂k + 1.96ŝe(β̂k)

)
.
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OLS Properties in the Small and in the Large

Set of assumptions (1) (2) (3) (4) (5) (6)

LRM1: linearity f u l f i l l e d

LRM2: simple random sampling f u l f i l l e d

LRM5: identi�ability f u l f i l l e d

LRM4: error variance

- LRM4a: homoskedastic ✓ ✓ ✓ × × ×

- LRM4b: heteroskedastic × × × ✓ ✓ ✓

LRM3: exogeneity

- LRM3a: normality ✓ × × ✓ × ×

- LRM3b: independent ✓ ✓ × × × ×

- LRM3c: mean indep. ✓ ✓ ✓ ✓ ✓ ×

- LRM3d: uncorrelated ✓ ✓ ✓ ✓ ✓ ✓

Small sample properties of β̂

- unbiased ✓ ✓ ✓ ✓ ✓ ×

- normally distributed ✓ × × ✓ × ×

- e�cient ✓ ✓ ✓ × × ×

t-test, F -test ✓ × × × × ×

Large sample properties of β̂

- consistent ✓ ✓ ✓ ✓ ✓ ✓

- approx. normal ✓ ✓ ✓ ✓ ✓ ✓

- asymptotically e�cient ✓ ✓ ✓ × × ×

z-test, Wald test ✓ ✓ ✓ ✓* ✓* ✓*

� Notes: ✓ = ful�lled, × = violated, * = corrected standard errors.
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4.5 Politically Connected Firms: Causality or Correlation?

Arguments For Causality of E�ect

Econometric methods need to address concerns, including:

� Misspeci�cation: Results robust to di�erent functional forms

� Errors-in-variables: little concern with administrative data

� External validity: Similar e�ect found in independent studies.

Arguments Against Causality of E�ect

� Omitted variable bias:

e.g., business acumen

→ Panel data models

� Sample selection bias:

lobbying expenditures only observed if in transparency register.

→ Selection correction models

� Simultaneous causality:
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� pro�ts may be higher because of political connections

� �rms may become connected because of their high pro�ts

All of those concerns may be addressed with

→instrumental variable models. What would be a good instrument/experiment?
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5 Simplifying Linear Regressions using Frisch-Waugh-

Lovell

5.1 Frisch-Waugh-Lovell theorem in equation algebra

From the multivariate to the bivariate regression

Regress yi on two explanatory variables, where x2
i is the variable of interest and x1

i (or

further variables) are not of interest.

yi = β0 + β2x
2
i + β1x

1
i + εi.

Surprising and useful result:

� We can obtain exactly the same coe�cients and residuals from a regression of

two demeaned variables

ỹi = β0 + β2x̃
2
i + εi.

� We can obtain exactly the same coe�cient and residuals from a regression of two

residualized variables

εyi = β2ε
2
i + εi.

Why is the decomposition useful?

Allows breaking a multivariate model with K independent variables into K bivariate

models.

� Relationship between two variables from a multivariate model can be shown in a

two-dimensional scatter plot

� Absorbs �xed e�ects to reduce computation time (see reghdfe for Stata)

� Allows to separate variability between the regressors (multicollinearity) and between

the residualized variable x̃2
i and the dependent variable yi.

� Understand biases in multivariate models tractably.

How to decompose yi and x2
i?

Partial out x1
i from yi and from x2

i .

� Regress x2
i on all x1

i and get residuals ε2i :

x2
i = γ0 + γ1x

1
i + ε2i ,
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this implies Cov(x1
i , ε

2
i ) = 0,

� Regress yi on all x1
i and get residuals εyi :

yi = δ0 + δ1x
1
i + εyi .

This implies Cov(x1
i , ε

y
i ) = 0.

From the residuals and the constants γ0 and δ0 generate

� x̃2
i = γ0 + ε2i ,

� ỹi = δ0 + εyi .

Finally,

ỹi = β̃0 + β̃1x̃
2
i + ε̃i = β0 + β2x̃

2
i + εi.

Decomposition theorem

For multivariate regressions and detrended regressions, e.g.,

yi = β0 + β2x
2
i + β1x

1
i + εi,

ỹi = β̃0 + β̃1x̃
2
i + ε̃i,

the same regression coe�cients will be obtained with any non-empty subset of the ex-

planatory variables, such that

β̃1 = β2 and also ε̃i = εi.

Decomposition theorem

Examining either set of residuals will convey precisely the same information about the

properties of the unobservable stochastic disturbances.

Detrended variables

Show that

yi = β0 + β2x
2
i + β1x

1
i + εi (2)

= ỹi = β̃0 + β̃1x̃
2
i + ε̃i.

Plug in the variables yi = δ0 + δ1x
1
i + εyi and x2

i = γ0 + γ1x
1
i + ε2i in the equation (2)

yi = δ0 + δ1x
1
i + εyi = β0 + β2(γ0 + γ1x

1
i + ε2i ) + β1x

1
i + εi

ỹi = δ0 + εyi = β0 + β2(γ0 + ε2i ) + (β2γ1 − δ1 + β1)x
1
i + εi.
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Because we partialled out x1
i using OLS, x

1
i is mechanically uncorrelated to ε2i and to εyi .

Therefore, the regression coe�cient (β2γ1 − δ1 + β1) of the partialled out variable x1
i is

zero. The equation simpli�es with x̃2
i = γ0 + ε2i to

ỹi = δ0 + εyi = β0 + β2(γ0 + ε2i ) + εi.

Regression anatomy: Only detrending x2
i and not yi. The regression constant, residu-

als, and the standard errors change but β2 remains

yi = δ0 + δ1x
1
i + εyi = (β0 + δ1x̄

1) + β2(γ0 + ε2i ) + (εi + δ1x
1
i )

yi = κ+ β2x̃
2 + ϵi.

Residualized variables

ỹi = δ0 + εyi = β0 + β2(γ0 + ε2i ) + εi

εyi = β0 − δ0 + β2γ0 + β2ε
2
i + εi.

The same result of the FWL Theorem holds as well for a regression of the residualized

variables because β0 = δ0 − β2γ0:

εyi = β2ε
2
i + εi.

5.2 Projection and residual maker matrices

Partition of y

Least squares partitions the vector y into two orthogonal parts

y = ŷ + e = Xb+ e = Py +My.

� n× 1 vector of data y

� n× n projection matrix P

� n× n residual maker matrix M

� n× 1 vector of residuals e
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Projection matrix

Py = Xb = X(X ′X)−1X ′y

→ P = X(X ′X)−1X ′.

Properties.

� symmetric such that P = P ′, thus orthogonal

� idempotent such that P = P 2, thus indeed a projection

� annihilator matrix PX = X

Projection matrix

Example for projection matrix

Show PX = X(X ′X)−1X ′X = X.

X =


1 0

1 1

1 0

 ;X'X =

1 1 1

0 1 0



1 0

1 1

1 0

 =

3 1

1 1

 ;X'X−1 =

 1/2 −1/2

−1/2 1.5

 ;

X(X ′X)−1X ′ =


1 0

1 1

1 0


 1/2 −1/2

−1/2 3/2

1 1 1

0 1 0

 =


1/2 0 1/2

0 1 0

1/2 0 1/2



PX =


1/2 0 1/2

0 1 0

1/2 0 1/2



1 0

1 1

1 0

 =


1 0

1 1

1 0

 .

Example
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Project y on the column space of X, i.e. regress y on x and predict E[y] = ŷ.

y =


1

2

3

 ;Py =


1/2 0 1/2

0 1 0

1/2 0 1/2



1

2

3

 = ŷ =


2

2

2

 .

Residual maker matrix

My = e = y −Xb = y −X(X ′X)−1X ′y

My = (I −X(X ′X)−1X ′)y

→ M = I −X(X ′X)−1X ′ = (I − P ).

Properties.

� symmetric such that M = M ′

� idempotent such that M = M 2

� annihilator matrix MX = 0

� orthogonal to P : PM = MP = 0.

Residual maker matrix

Example for residual maker matrix

Show MX = (I −X(X ′X)−1X ′)X = (I − P )X = X −X = 0.

I =


1 0 0

0 1 0

0 0 1

 ;X =


1 0

1 1

1 0

 ;

Example
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M = (I − P ) =


1 0 0

0 1 0

0 0 1

−


1/2 0 1/2

0 1 0

1/2 0 1/2

 =


1/2 0 −1/2

0 0 0

−1/2 0 1/2



MX =


1/2 0 −1/2

0 0 0

−1/2 0 1/2



1 0

1 1

1 0

 =


0 0

0 0

0 0

 .

Obtain residuals from a projection of y on the column space of X, i.e. regress y on x

and predict y − E[y] = y − ŷ.

y =


1

2

3

 ;My =


1/2 0 −1/2

0 0 0

−1/2 0 1/2



1

2

3

 = y − ŷ =


−1

0

1

 .

Column space of X is x0 and x1.
x1
0 = 1 x1

1 = 0 y1 = 1

x2
0 = 1 x2

1 = 1 y2 = 2

x3
0 = 1 x3

1 = 0 y3 = 3

 ; ŷ =


2

2

2

 ;y − ŷ =


−1

0

1

 .

The closest point from the vector y′ =

[1, 2, 3] onto the column space of X, is

ŷ = Xb, here ŷ′ = [2, 2, 2]. At this point,

we can draw a line orthogonal to the column

space of X.
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Decomposing the normal equations

The normal equations1 in matrix form are X ′Xb = X ′y. If X is partitioned into an

interesting segment X2 and an uninteresting X1, normal equations areX ′
1X1 X ′

1X2

X ′
2X1 X ′

2X2

b1
b2

 =

X ′
1y

X ′
2y

 .

The multiplication of the two equations can be done separately

[
X ′

1X1 X ′
1X2

]b1
b2

 =
[
X ′

1y
]

(3)

[
X ′

2X1 X ′
2X2

]b1
b2

 =
[
X ′

2y
]
. (4)

How can we �nd an expression for b2 that does not involve b1?

Solving for b2

Idea: Solve equation (3) for b1 in terms of b2, then substituting that solution into the

equation (4).

[
X ′

1X1 X ′
1X2

]b1
b2

 =
[
X ′

1y
]

X ′
1X1b1 +X ′

1X2b2 = X ′
1y

X ′
1X1b1 = X ′

1y −X ′
1X2b2

b1 = (X ′
1X1)

−1X ′
1y − (X ′

1X1)
−1X ′

1X2b2

= (X ′
1X1)

−1X ′
1(y −X2b2)

Multiplying out equation (4) gives

[
X ′

2X1 X ′
2X2

]b1
b2

 =
[
X ′

2y
]

X ′
2X1b1 +X ′

2X2b2 = X ′
2y

Plugging in the solution for b1 gives

X ′
2X1

(
(X ′

1X1)
−1X ′

1(y −X2b2)

)
+X ′

2X2b2 = X ′
2y.

1It is called a normal equation because y −Xb is normal to the range of X.
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X ′
2X1(X

′
1X1)

−1X ′
1(y −X2b2) +X ′

2X2b2 = X ′
2y.

The middle part of the �rst term is X1(X
′
1X1)

−1X ′
1. This is the projection matrix PX1

from a regression of y on X1.

X ′
2PX1y −X ′

2PX1X2b2 +X ′
2X2b2 = X ′

2y.

We can multiply by an identity matrix I without changing anything

X ′
2PX1y −X ′

2PX1X2b2 +X ′
2IX2b2 = X ′

2Iy.

X ′
2Iy −X ′

2PX1y = X ′
2IX2b2 −X ′

2PX1X2b2.

X ′
2(I − PX1)y = X ′

2(I − PX1)X2b2.

Now (I − PX1) is the residual maker matrix MX1

X ′
2MX1y = X ′

2MX1X2b2.

Solving for b2 gives

b2 = (X ′
2MX1X2)

−1X ′
2MX1y.

b2 = (X ′
2MX1X2)

−1X ′
2MX1y.

The residualizer matrix is symmetric and idempotent, such that MX1 = MX1MX1 =

M ′
X1
MX1 .

b2 = (X ′
2M

′
X1
MX1X2)

−1X ′
2M

′
X1
MX1y

=

(
(MX1X2)

′(MX1X2)

)−1

(MX1X2)
′(MX1y)

= (X̃ ′
2X̃2)

−1X̃ ′
2ỹ.

This is the OLS solution for b2, with X̃2 instead of X and ỹ instead of y.

� X̃2 are residuals from a regression of X2 on X1

� ỹ are residuals from a regression of y on X1

The solution of the regression coe�cients b2 in a regression that includes other regres-

sors X1 is the same as �rst regressing all of X2 and y on X1, then regressing the residuals
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from the y regression on the residuals from the X2 regression.
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6 The Maximum Likelihood Estimator

6.1 From Probability to Likelihood

The Likelihood Principle

Suppose you have three credit cards. You forgot, which has money on it or not. Thus,

the number credit cards with money, call it θ, might be 0, 1, 2, or 3. You can try your

cards 4 times at random to check if you can make a payment.

The checks are random variables y1, y2, y3, and y4. They are

yi =

1, if the ith card has money on it,

0, otherwise.

Since you chose yi's uniformly, they are i.i.d. and yi ∼ Bernoulli(θ/3). After checking,

we �nd y1 = 1, y2 = 0, y3 = 1, y4 = 1. We observe 3 cards with money and 1 without.

The number credit cards with money could still be 0, 1, 2, or 3.

Which is most likely?

From Probability to Likelihood

You could test for the true θ0 in many samples. Conversely, you can check each possible

value of θ to �nd the probability of observing the sample (y1 = 1, y2 = 0, y3 = 1, y4 = 1).

Since yi ∼ Bernoulli(θ/3), we have

Prob(yi = y) =

θ/3, for y = 1,

1− θ/3, for y = 0.

Since yi's are independent, the joint PMF of y1, y2, y3, and y4 can be written as

Prob(y1 = y, y2 = y, y3 = y, y4 = y|θ) =

Prob(y1)Prob(y2)Prob(y3)Prob(y4).

This depends on θ, and is called likelihood function:

L(θ|yi) = Prob(y1 = 1, y2 = 0, y3 = 1, y4 = 1, θ) =

θ/3(1− θ/3)θ/3θ/3 = (θ/3)3(1− θ/3).

90



Trial 1 2 3 4

θ 0 1 2 3

Prob(·) 0.0000 0.0247 0.0988 0.0000

Values of the Likelihood L(θ|yi) for di�erent θ
The probability of the observed sample for θ = 0 and θ = 3 is zero. This makes sense

because our sample included both cards with and without money. The observed data is

most likely to occur for θ = 2.

Likelihood principle: choose θ that maximizes the likelihood of observing the actual

sample to get an estimator for θ0.

The likelihood is the probability from

� probability mass function if discrete

� probability distribution function if continuous

From Likelihood to Log-Likelihood

� The likelihood function LN(θ|y,X) is the joint probability mass function or

density f(y,X|θ), viewed as a function of vector θ given the data (y,X).

� Maximizing LN(θ) is equivalent to maximizing the log-likelihood function LN(θ) =

lnLN(θ). Because taking the logarithm is a monotonic transformation. A maximum
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Model Range of y Density f(y) Common Parametrization

Bernoulli 0 or 1 py(1− p)1−y p = e−x′β

1+e−x′β

Poisson 0, 1, 2, . . . e−λλy/y! λ = ex
′β

Exponential (0,∞) λe−λy λ = ex
′β or 1/λ = ex

′β

Normal (−∞,∞) (2πσ2)−1/2e−(y−µ)2/2σ2
µ = x′β, σ2 = σ2

for LN(θ) corresponds with a maximum for LN(θ).

6.2 The Econometric Model

Speci�cation of a Likelihood Function

The conditional likelihood LN(θ) = f(y,X|θ)/f(X|θ) = f(y|X,θ) does not require the

speci�cation of the marginal distribution of X.

For observations (yi, xi) independent over i and distributed with f(y|X,θ),

� the joint density is

f(y|X,θ) = ΠN
i=1f(yi|xi,θ),

� the log-likelihood function divided by N is

1

N
LN(θ) =

1

N

N∑
i=1

ln f(yi|xi,θ).

Maximum Likelihood Estimator
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The maximum likelihood estimator (MLE) is the estimator that maximizes the (con-

ditional) log-likelihood function LN(θ).

The MLE is the local maximum that solves the �rst-order conditions

1

N

∂LN(θ)

∂θ
=

1

N

N∑
i=1

∂ ln f(yi|xi,θ)

∂θ
= 0.

This estimator is an extremum estimator on based on the conditional density of y given

x. The gradient vector ∂LN (θ)
∂θ

is called the score vector, as it sums the �rst derivatives

of the log density, and when evaluated at θ0 it is called the e�cient score.

How Were the Data Generated?

{xi1, . . . , xiK , yi}Ni=1 i.i.d. (independent and identically distributed)

Simple Random Sampling

This assumption means that

� observation i has no information content for observation j ̸= i

� all observations i come from the same distribution

This assumption is guaranteed by simple random sampling provided there is no systematic

non-response or truncation.
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I.i.d. data simplify the maximization as the joint density of the two variables is simply

the product of the two marginal densities.

For example with a normal joint pdf with two observations

f (y1, y2) = fY1 (y1) fY2 (y2) =
1

2πσ2
e−

[(y1−µ)2+(y2−µ)2]
2σ2 .

With dependent observations we would have to maximize the following likelihood

function, where ρ is the correlation:

1

2πσ2
√

1− ρ2
e
−
[(y1−µ)2+(y2−µ)2−(y1−µ)(y2−µ)]

2σ2(1−ρ2) .

The Score has Expected Value Zero

Likelihood Equation:

Ef

[
g(θ)

]
= Ef

[
∂ ln f(y|x,θ)

∂θ

]
=

∫
∂ ln f(y|x,θ)

∂θ
f(y|x,θ)dy = 0.

∫
f(y|θ)dy = 1.

∂

∂θ

∫
f(y|θ)dy = 0.∫

∂f(y|θ)
∂θ

dy = 0.

∂ ln f(y|θ)/∂θ = [∂f(y|θ)/∂θ]/[f(y|θ)]

∂f(y|θ)
∂θ

=
∂ ln f(y|θ)

∂θ
f(y|θ).

∫
∂ ln f(y|θ)

∂θ
f(y|θ)dy = 0.

Example

Fisher Information

The information matrix is the expectation of the outer product of the score vector,

I = Ef

[
∂ ln f(y|x,θ)

∂θ

∂ ln f(y|x,θ)
∂θ′

]
.
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The Fisher information I is equals the variance of the score, since ∂LN (θ)
∂θ

has mean

zero.

� Large values of I mean that small changes in θ lead to large changes in the log-

likelihood

→ LN(θ) contains considerable information about θ,

� Small values of I mean that the maximum is shallow and there are many nearby

values of θ with a similar log-likelihood.

Information Matrix Equality

The Fisher information I is equals the expectation of the Hessian H :

−Ef

[
H(θ)

]
= −Ef

[
∂2 ln f(y|x,θ)

∂θ∂θ′

]
= Ef

[
∂ ln f(y|x,θ)

∂θ

∂ ln f(y|x,θ)
∂θ′

]
.

For vector moment function, e.g., m(y,θ) =
∂ ln f(y|θ)

∂θ
with E[m(y,θ)] = 0,∫

m(y,θ)f(y|θ)dy = 0.

∫ (
∂m(y,θ)

∂θ′ f(y|θ) +m(y,θ)
∂f(y|θ)
∂θ′

)
dy = 0.

∫ (
∂m(y,θ)

∂θ′ f(y|θ) +m(y,θ)
∂ ln f(y|θ)

∂θ′ f(y|θ)
)
dy = 0.

E

[
∂m(y,θ)

∂θ′

]
= −E

[
m(y,θ)

∂ ln f(y|θ)
∂θ′

]
= 0.

Example

The Information Matrix in Practice

The variance of the sum of random score vector is:

Information matrix equality:

Var

[
n∑

i=1

gi (θ)

]
= Var [g (θ)] = −Ef [H (θ)] = −E

[
∂2 lnL

∂θ∂θ′

]
.

After taking the expected value, θ̂ is substituted for θ. Problem: Taking the expected

value of the second derivative matrix is frequently infeasible.
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There exist two alternatives which are asymptotically equivalent:

� Ignore the expected value operator:

Î(θ̂) = −∂2 lnL

∂θ̂∂θ̂′
.

� Berndt-Hall-Hall-Hausman (BHHH) algorithm

Never take a second derivative and sum over the outer product of the scores: (�rst

derivatives per observation):

Ǐ(θ̂) =
n∑

i=1

ĝiĝ
′
i =

n∑
i=1

∂ ln f
(
yi, θ̂

)
∂θ̂

∂ ln f
(
yi, θ̂

)
∂θ̂

′

.

6.3 Properties of the Maximum Likelihood Estimator

Properties of the MLE

� Small sample properties of θ̂

� may be biased

� may have unknown distribution

� variance may be biased, even towards zero

� Large sample properties of θ̂

� consistent

� approx. normal

� asymptotically e�cient

� invariant
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Consistency

Law of Large Numbers

As N increases, the distribution of θ̂ becomes more tightly centered around θ.

(a) N=3 (b) N=10

(c) N=25 (d) N=100

Likelihood Inequality

E[(1/N) lnL(θ̂)] ≥ E[(1/N) lnL(θ)].

The expected value of the log-likelihood is maximized at the true value of the parameters.

Figure 15: θ̂, Likelihood and Log-Likelihood as n → ∞. True θ = 0.6.

lim
n→∞

P (|θ̂ − θ| > ϵ) = 0. lim
n→∞

E[θ̂] = θ.
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Approximate Normality

Central Limit Theorem

As N becomes large,

θ̂
a∼ N

[
θ,−

(
E

[
∂2LN(θ)

∂θ∂θ′

])−1 ]
.

Figure 16: Sampling distribution of θ̂ drawn from Bernoulli distribution and normal
distribution at N = 100. True θ = 0.6.

E�ciency

The precision of the estimate θ̂ is limited by the Fisher information I of the likelihood.

Var
(
θ̂
)
≥ 1

I (θ)
.

For large samples, this is the so-called Cramér-Rao lower bound for the variance matrix

of consistent asymptotically normal estimators with convergence to normality of
√
N(θ̂−

θ0) uniform in compact intervals of θ0.

Under the strong assumption of correct speci�cation of the conditional density, the

MLE has the smallest asymptotic variance among root-N consistent estimators.
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Since the MLE is unbiased,

E
[
θ̂ − θ

∣∣∣ θ
]
=

∫ (
θ̂ − θ

)
f(y;θ) dy = 0 regardless of the value of θ.

This expression is zero independent of θ, so its partial derivative with respect to θ must

also be zero. By the product rule, this partial derivative is also equal to

0 =
∂

∂θ

∫ (
θ̂ − θ

)
f(y;θ) dy =

∫ (
θ̂ − θ

) ∂f

∂θ
dy −

∫
f dy.

For each θ, the likelihood function is a probability density function, and therefore∫
f dy = 1. By using the chain rule on the partial derivative of ln f and then divid-

ing and multiplying by f(y;θ), one can verify that

∂f

∂θ
= f

∂ ln f

∂θ
.

Using these two facts, we get ∫ (
θ̂ − θ

)
f
∂ ln f

∂θ
dy = 1.

Factoring the integrand gives
∫ ((

θ̂ − θ
)√

f
) (√

f ∂ ln f
∂θ

)
dy = 1.

Squaring the expression in the integral, the Cauchy-Schwarz inequality yields

1 =

(∫ [(
θ̂ − θ

)√
f
]
·
[√

f
∂ ln f

∂θ

]
dy

)2

≤
[∫ (

θ̂ − θ
)2

f dy

]
·

[∫ (
∂ ln f

∂θ

)2

f dy

]
.

The �rst factor is the expected mean-squared error (the variance) of the estimator θ̂, the

second factor is the Fisher Information.

Example

Invariance

The MLE of γ = c (θ) is θ̂ = c(θ̂) if c (θ) is a continuous and continuous di�erentiable

function.

� This simpli�es the log-likelihood,

� This allows a function of θ̂ to serve as MLE if it is desired to analyze the function

of an MLE.
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Suppose that the normal log-likelihood is parameterized in terms of the precision param-

eter, θ2 = 1/σ2. The log-likelihood becomes

lnL(µ, σ2) = −(N/2) ln(2π) + (N/2) ln θ2 − θ2

2

N∑
i=1

(yi − µ)2.

The MLE for µ is x̄. But the likelihood equation for θ2 is now

∂ lnL(µ, θ2)

∂θ2
= 1/2

[
N/θ2 −

N∑
i=1

(yi − µ)2
]
= 0,

which has solution θ̂2 = N/
∑N

i=1(yi − µ)2 = 1/σ̂2.

Example

The MLE is also equivariant with respect to certain transformations of the data.

If y = c(x) where c is one to one and does not depend on the parameters to be

estimated, then the density functions satisfy

fY (y) =
fX(x)

|c′(x)|
,

and hence the likelihood functions for x and y di�er only by a factor that does not

depend on the model parameters.

The MLE parameters of the log-normal distribution are the same as those of the normal

distribution �tted to the logarithm of the data.

Example
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7 The Generalized Method of Moments

7.1 How to choose from too many restrictions?

Minimize the quadratic form

The overidenti�ed GMM estimator θ̂GMM(Wn) for K parameters in θ identi�ed by L > K

moment conditions is a function of the weighting matrix Wn for a sample of i = 1, ..., n

observations:

θ̂GMM(Wn) = argmin
θ

qn(θ),

where the quadratic form qn(θ) is the criterion function and is given as a function of

the sample moments m̄n(θ)

qn(θ) = m̄n(θ)
′Wm̄n(θ).

The sample moments are a function

m̄n(θ) = 1/n
N∑
i=1

m(Xi, Zi, θ0)

of the model variables Xi, the instruments Zi, and the true parameters θ0.

What are the properties of the quadratic form

qn(θ)
1×1

= m̄n(θ)
′

1×L

W
L×L

m̄n(θ)
L×1

.

Quadratic form criterion function qn(θ) ≥ 0 is a scalar!

Weighting matrix W is symmetric (and positive de�nite that is x′Wx > 0 for all

non-zero x)!

7.2 Get the sampling error (at least approximately)

Get an approximate deviation from the true θ0

First order Taylor expansion of sample moments m̄n(θ̂GMM) around m̄n(θ0) at true pa-

rameters gives:

m̄n(θ̂GMM) ≈ m̄n(θ0) + Ḡn(θ̄)(θ̂GMM − θ0),
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where Ḡn(θ̄) =
∂m̄n(θ̄)

∂θ̄′
and θ̄ is a point between θ̂GMM and θ0.

Check the dimensions

First order Taylor expansion of sample moments m̄n(θ̂GMM) around m̄n(θ0) at true pa-

rameters gives:

m̄n(θ̂GMM)
L×1

≈ m̄n(θ0)
L×1

+ Ḡn(θ̄)
L×K

(θ̂GMM − θ0)
K×1

,

where Ḡn(θ̄) =
∂m̄n(θ̄)

L×1

∂ θ̄′
1×K

and θ̄ is a point between θ̂GMM and θ0, because of the

Mean value theorem...

Approximation introduced θ̄

...where Ḡn(θ̄) =
∂m̄n(θ̄)

∂θ̄′
and θ̄ is a point between θ̂GMM and θ0.

Ḡn(θ̄) =
m̄n(θ̂GMM)− m̄n(θ0)

θ̂GMM − θ0
for θ0 < θ̄ < θ̂GMM .

Mean value theorem

Do the minimization

To minimize the quadratic form criterion, we take the �rst derivative of
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qn(θ) = m̄n(θ)
′Wm̄n(θ)

∂qn(θ̂GMM)

∂θ̂GMM

= 2Ḡn(θ̂GMM)′Wnm̄n(θ̂GMM) = 0.

Express as much as possible asymptotically

∂qn(θ̂GMM)

∂θ̂GMM

= 2Ḡn(θ̂GMM)′Wnm̄n(θ̂GMM) = 0,

Plug in the approximation from before

m̄n(θ̂GMM) ≈ m̄n(θ0) + Ḡn(θ̄)(θ̂GMM − θ0)

to obtain

Ḡn(θ̂GMM)′Wnm̄n(θ0) + Ḡn(θ̂GMM)′WnḠn(θ̄)(θ̂GMM − θ0) ≈ 0

which we rearrange to get the very useful

θ̂GMM ≈ θ0 − (Ḡn(θ̂GMM)′WnḠn(θ̄))
−1Ḡn(θ̂GMM)′Wnm̄n(θ0).

So the estimate θ̂GMM is approximately the true parameter θ0 plus a sampling error that

depends on the sample moment m̄n(θ0).

Quickly check dimensions

Useful approximation

θ̂GMM
K×1

≈ θ0
K×1

− (Ḡn(θ̂GMM)′

K×L

Wn
L×L

Ḡn(θ̄)
L×K

)−1Ḡn(θ̂GMM)′

K×L

Wn
L×L

m̄n(θ0)
L×1

.

So the estimate θ̂GMM is approximately the true parameter θ0 plus a sampling error that

depends on the sample moment m̄n(θ0).
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7.3 The econometric model

Three assumptions: moment conditions

.

m̄(θa) ̸= m̄(θ0) = E[m(Xi, Zi, θ0)] = 0.

Identi�cation implies that the probability limit of the GMM criterion function is uniquely

minimized at the true parameters.

GMM1: Moment Conditions and Identi�cation

Three assumptions: law of large numbers

.

m̄n(θ) = 1/n
N∑
i=1

m(Xi, Zi, θ0)
p→ E[m(Xi, Zi, θ0)].

The data meets the conditions for a law of large numbers to apply, so that we may assume

that the empirical moments converge in probability to their expectation.

GMM2: Law of Large Numbers Applies

Three assumptions: central limit theorem

.
√
nm̄n(θ) =

√
n/n

N∑
i=1

m(Xi, Zi, θ0)
d→ N [0,Φ].

The empirical moments obey a central limit theorem. This assumes that the moments

have a �nite asymptotic covariance matrix E[m(Xi, Zi, θ0)m(Xi, Zi, θ0)
′] = Φ.

GMM3: Central Limit Theorem Applies

7.4 Consistency

Recall the useful approximation of the estimator:

θ̂GMM ≈ θ0 − (Ḡn(θ̂GMM)′WnḠn(θ̄))
−1Ḡn(θ̂GMM)′Wnm̄n(θ0).
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Assumption GMM2 implies that

m̄n(θ0) = 1/n
N∑
i=1

m(Xi, Zi, θ0)
p→ E[m(Xi, Zi, θ0)] = m̄(θ0).

That is, the sample moment equals the population moment in probability. Assumption

GMM1 implies that

m̄(θ0) = 0.

Then

m̄n(θ0)
p→ m̄(θ0) = 0,

such that

θ̂GMM
p→ θ0 for N → ∞

That is, by GMM1 and GMM2 the GMM estimator is consistent.

7.5 Asymptotic normality

Recall the useful approximation of the estimator:

θ̂GMM ≈ θ0 − (Ḡn(θ̂GMM)′WnḠn(θ̄))
−1Ḡn(θ̂GMM)′Wnm̄n(θ0).

Rewrite to obtain

√
n(θ̂GMM − θ0) ≈ −(Ḡn(θ̂GMM)′WnḠn(θ̄))

−1Ḡn(θ̂GMM)′Wn

√
nm̄n(θ0),

The right hand side has several parts for which we made assumptions on what happens

when N → ∞. Under the central limit theorem (GMM3)

√
nm̄n(θ0)

d→ N [0,Φ]

plimWn = W

plimḠn(θ̂GMM) = plimḠn(θ̄) = plim
∂m(Xi, Zi, θ0)

∂θ′0
= E

[
∂m̄(θ0)

∂θ′0

]
= Γ(θ0)

With plimWn = W and

plimḠn(θ̂GMM) = plimḠn(θ̄) = Γ(θ0)
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the expression

√
n(θ̂GMM − θ0) ≈ −(Ḡn(θ̂GMM)′WnḠn(θ̄))

−1Ḡn(θ̂GMM)′Wn

√
nm̄n(θ0)

becomes

√
n(θ̂GMM − θ0) ≈ −(Γ(θ0)

′WΓ(θ0))
−1Γ(θ0)

′W
√
nm̄n(θ0)

from which we get the variance V . So

√
n(θ̂GMM − θ0)

d→ N [0, V ]

with

V
K×K

= 1/n[Γ(θ0)
′WΓ(θ0)]

−1[Γ(θ0)
′WΦW ′Γ(θ0)][Γ(θ0)

′WΓ(θ0)]
−1

That is by GMM1, GMM2, and GMM3 the GMM estimator is asymptotic normal.

7.6 Asymptotic e�ciency

Which weighting matrixW gives us the smallest possible asymptotic variance of the GMM

estimator θ̂GMM .

The variance of the GMM estimator V depends on the choice of W

V = 1/n[Γ(θ0)
′WΓ(θ0)]

−1[Γ(θ0)
′WΦW ′Γ(θ0)][Γ(θ0)

′WΓ(θ0)]
−1

So let us minimize V to get the optimal weight matrix. Try from GMM3

plim
n→∞

Wn = W = Φ−1

VGMM,optimal = 1/n[Γ(θ0)
′Φ−1Γ(θ0)]

−1[Γ(θ0)
′Φ−1ΦΦ−1′Γ(θ0)][Γ(θ0)

′Φ−1Γ(θ0)]
−1

Which can be simpli�ed to

VGMM,optimal = 1/n[Γ(θ0)
′Φ−1Γ(θ0)]

−1

VGMM,optimal = 1/n[Γ(θ0)
′Φ−1Γ(θ0)]

−1

If Φ is small, there is little variation of this speci�c sample moment around zero and the

moment condition is very informative about θ0. So it is best to assign a high weight to it.
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VGMM,optimal = 1/n[Γ(θ0)
′Φ−1Γ(θ0)]

−1

If Γ is large, there is a large penalty from violating the moment condition by evaluating

at θ ̸= θ0. Then the moment condition is very informative about θ0. V is inversely related

to Γ.
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Estimate the variance in practice

V̂GMM,optimal = 1/n[Ḡn(θ̂)
′Φ−1

n Ḡn(θ̂)]
−1

Consistent estimator

Φn = NV (m̄n(θ̂))

Ḡn(θ̂) =
∂m(Xi, Zi, θ̂)

∂θ̂′
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8 Conclusion

Congratulations! If you made it through this document, you are ready to read some econo-

metrics papers, program and develop new estimators, and analyze statistical properties.

If this caught your interest, check out non-parametric and Bayesian econometrics.
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