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Minimize the quadratic form

The overidentified GMM estimator �̂GMM(Wn) for K parameters in � identified
by L > K moment conditions is a function of the weighting matrix Wn for a
sample of i = 1; :::; n observations:

�̂GMM(Wn) = min
�

qn(�);

where the quadratic form qn(�) is the criterion function and is given as a
function of the sample moments m̄n(�)

qn(�) = m̄n(�)0Wm̄n(�):

The sample moments are a function

m̄n(�) = 1=n
NX
i=1

m(Xi ;Zi ; �0)

of the model variables Xi , the instruments Zi , and the true parameters �0.
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What are the properties of the quadratic form

qn(�)
1�1

= m̄n(�)0
1�L

W
L�L

m̄n(�)
L�1

:

Quadratic form criterion function qn(�) � 0 is a scalar!

Weighting matrix W is symmetric (and positive definite that is
x 0Wx > 0 for all non-zero x)!
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Get an approximate deviation from the true �0

First order Taylor expansion of sample moments m̄n(�̂GMM) around
m̄n(�0) at true parameters gives:

m̄n(�̂GMM) � m̄n(�0) + Ḡn(�̄)(�̂GMM � �0);

where Ḡn(�̄) = @m̄n(�̄)

@�̄0
and �̄ is a point between �̂GMM and �0.
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Check the dimensions

First order Taylor expansion of sample moments m̄n(�̂GMM) around
m̄n(�0) at true parameters gives:

m̄n(�̂GMM)
L�1

� m̄n(�0)
L�1

+ Ḡn(�̄)
L�K

(�̂GMM � �0)
K�1

;

where Ḡn(�̄) =
@m̄n(�̄)

L�1

@ �̄0
1�K

and �̄ is a point between �̂GMM and �0, because

of the

Mean value theorem...
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Approximation introduced �̄

...where Ḡn(�̄) = @m̄n(�̄)

@�̄0
and �̄ is a point between �̂GMM and �0.

Mean value theorem:

Ḡn(�̄) =
m̄n(�̂GMM)� m̄n(�0)

�̂GMM � �0

for �0 < �̄ < �̂GMM :
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Do the minimization

To minimize the quadratic form criterion, we take the first derivative of

qn(�) = m̄n(�)0Wm̄n(�)

@qn(�̂GMM)

@�̂GMM

= 2Ḡn(�̂GMM)0Wnm̄n(�̂GMM) = 0:
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Express as much as possible asymptotically

@qn(�̂GMM)

@�̂GMM

= 2Ḡn(�̂GMM)0Wnm̄n(�̂GMM) = 0;

Plug in the approximation from before

m̄n(�̂GMM) � m̄n(�0) + Ḡn(�̄)(�̂GMM � �0)

to obtain

Ḡn(�̂GMM)0Wnm̄n(�0) + Ḡn(�̂GMM)0WnḠn(�̄)(�̂GMM � �0) � 0

which we rearrange to get the very useful

�̂GMM � �0 � (Ḡn(�̂GMM)0WnḠn(�̄))�1Ḡn(�̂GMM)0Wnm̄n(�0):

So the estimate �̂GMM is approximately the true parameter �0 plus an
sampling error that depends on the sample moment m̄n(�0).

11



Quickly check dimensions

Useful approximation

�̂GMM
K�1

� �0
K�1

� (Ḡn(�̂GMM)0
K�L

Wn
L�L

Ḡn(�̄)
L�K

)�1Ḡn(�̂GMM)0
K�L

Wn
L�L

m̄n(�0)
L�1

:

So the estimate �̂GMM is approximately the true parameter �0 plus an
sampling error that depends on the sample moment m̄n(�0).
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Three assumptions: moment conditions

Definition

GMM1: Moment Conditions and Identification.

m̄(�a) 6= m̄(�0) = E [m(Xi ;Zi ; �0)] = 0:

Identification implies that the probability limit of the GMM criterion
function is uniquely minimized at the true parameters.
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Three assumptions: law of large numbers

Definition

GMM2: Law of Large Numbers Applies.

m̄n(�) = 1=n
NX
i=1

m(Xi ;Zi ; �0)
p! E [m(Xi ;Zi ; �0)]:

The data meets the conditions for a law of large numbers to apply, so
that we may assume that the empirical moments converge in probability
to their expectation.
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Three assumptions: central limit theorem

Definition

GMM3: Central Limit Theorem Applies.

p
nm̄n(�) =

p
n=n

NX
i=1

m(Xi ;Zi ; �0)
d! N[0;Φ]:

The empirical moments obey a central limit theorem. This assumes that
the moments have a finite asymptotic covariance matrix.
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Consistency

Recall the useful approximation of the estimator:

�̂GMM � �0 � (Ḡn(�̂GMM)0WnḠn(�̄))�1Ḡn(�̂GMM)0Wnm̄n(�0):

Assumption GMM2 implies that

m̄n(�0) = 1=n
NX
i=1

m(Xi ;Zi ; �0)
p! E [m(Xi ;Zi ; �0)] = m̄(�0):

That is, the sample moment equals the population moment in
probability. Assumption GMM1 implies that

m̄(�0) = 0:

Then
m̄n(�0)

p! m̄(�0) = 0;

such that
�̂GMM

p! �0 for N !1
That is, by GMM1 and GMM2 the GMM estimator is consistent.
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Asymptotic normality

Recall the useful approximation of the estimator:

�̂GMM � �0 � (Ḡn(�̂GMM)0WnḠn(�̄))�1Ḡn(�̂GMM)0Wnm̄n(�0):

Rewrite to obtain

p
n(�̂GMM � �0) � �(Ḡn(�̂GMM)0WnḠn(�̄))�1Ḡn(�̂GMM)0Wn

p
nm̄n(�0);

The right hand side has several parts for which we made assumptions on
what happens when N !1. Under the central limit theorem (GMM3)

p
nm̄n(�0)

d! N[0;Φ]

plimWn = W

plimḠn(�̂GMM) = plimḠn(�̄) = plim
@m(Xi ;Zi ; �0)

@�00
= E

�
@m̄(�0)

@�00

�
= Γ(�0)
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Asymptotic normality

With plimWn = W and

plimḠn(�̂GMM) = plimḠn(�̄) = Γ(�0)

the expression
p
n(�̂GMM � �0) � �(Ḡn(�̂GMM)0WnḠn(�̄))�1Ḡn(�̂GMM)0Wn

p
nm̄n(�0)

becomes
p
n(�̂GMM � �0) � �(Γ(�0)0WΓ(�0))�1Γ(�0)0W

p
nm̄n(�0)

from which we get the variance V . So
p
n(�̂GMM � �0)

d! N[0;V ]

with

V
K�K

= 1=n[Γ(�0)0WΓ(�0)]�1[Γ(�0)0WΦW 0Γ(�0)][Γ(�0)0WΓ(�0)]�1

That is by GMM1, GMM2, and GMM3 the GMM estimator is
asymptotic normal.
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Asymptotic efficiency

Which weighting matrix W gives us the smallest possible asymptotic
variance of the GMM estimator �̂GMM .
The variance of the GMM estimator V depends on the choice of W

V = 1=n[Γ(�0)0WΓ(�0)]�1[Γ(�0)0WΦW 0Γ(�0)][Γ(�0)0WΓ(�0)]�1

So let us minimize V to get the optimal weight matrix. Try from GMM3

plim
n!1

Wn = W = Φ�1

VGMM;optimal = 1=n[Γ(�0)0Φ�1Γ(�0)]�1[Γ(�0)0Φ�1ΦΦ�10Γ(�0)][Γ(�0)0Φ�1Γ(�0)]�1

Which can be simplified to

VGMM;optimal = 1=n[Γ(�0)0Φ�1Γ(�0)]�1

23



Asymptotic efficiency

VGMM;optimal = 1=n[Γ(�0)0Φ�1Γ(�0)]�1

If Φ is small, there is little variation of this specific sample moment
around zero and the moment condition is very informative about �0. So
it is best to assign a high weight to it.
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Asymptotic efficiency

VGMM;optimal = 1=n[Γ(�0)0Φ�1Γ(�0)]�1

If Γ is large, there is a large penalty from violating the moment condition
by evaluating at � 6= �0. Then the moment condition is very informative
about �0. V is inversely related to Γ.
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Estimate the variance in practice

V̂GMM;optimal = 1=n[Γ(�0)0Φ�1
n Γ(�0)]�1

Consistent estimator
Φn = NV (m̄n(�))

Ḡn(�̄) =
@m(Xi ;Zi ; �̂)

@�̂0
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