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The Likelihood Principle

Suppose you have three credit cards. You forgot, which has money on it
or not. Thus, the number credit cards with money, call it �, might be 0,
1, 2, or 3. You can try your cards 4 times at random to check if you can
make a payment.

The checks are random variables y1; y2; y3; and y4. They are

yi =

(
1; if the ith card has money on it,

0; otherwise:

Since you chose yi ’s uniformly, they are i.i.d. and yi � Bernoulli(�=3).
After checking, we find y1 = 1; y2 = 0; y3 = 1; y4 = 1. We observe 3
cards with money and 1 without.

The number credit cards with money could still be 0, 1, 2, or 3.
Which is most likely?
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From Probability to Likelihood

You could test for the true �0 in many samples. Conversely, you can
check each possible value of � to find the probability of observing the
sample (y1 = 1; y2 = 0; y3 = 1; y4 = 1).

Since yi � Bernoulli(�=3), we have

Prob(yi = y) =

(
�=3; for y = 1;

1� �=3; for y = 0:

Since yi ’s are independent, the joint PMF of y1; y2; y3; and y4 can be
written as

Prob(y1 = y ; y2 = y ; y3 = y ; y4 = y j�) =

Prob(y1)Prob(y2)Prob(y3)Prob(y4):

This depends on �, and is called likelihood function:

L(�jyi ) = Prob(y1 = 1; y2 = 0; y3 = 1; y4 = 1; �) =

�=3(1� �=3)�=3�=3 = (�=3)3(1� �=3):
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The Likelihood Principle

Values of the Likelihood L(�jyi ) for different �

Trial 1 2 3 4

� 0 1 2 3
Prob(�) 0.0000 0.0247 0.0988 0.0000

The probability of the observed sample for � = 0 and � = 3 is zero. This
makes sense because our sample included both cards with and without
money. The observed data is most likely to occur for � = 2.

Likelihood principle: choose � that maximizes the likelihood of
observing the actual sample to get an estimator for �0.
The likelihood is the probability from

▶ probability mass function if discrete

▶ probability distribution function if continuous
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From Likelihood to Log-Likelihood

▶ The likelihood function LN(θjy ;X ) is the joint probability mass function
or density f (y ;X jθ), viewed as a function of vector θ given the data
(y ;X ).

▶ Maximizing LN(θ) is equivalent to maximizing the log-likelihood
function LN(θ) = ln LN(θ). Because taking the logarithm is a monotonic
transformation. A maximum for LN(θ) corresponds with a maximum for
LN(θ).
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Specification of a Likelihood Function

The conditional likelihood LN(θ) = f (y ;X jθ)=f (X jθ) = f (y jX ;θ) does not
require the specification of the marginal distribution of X .
For observations (yi ; xi ) independent over i and distributed with f (y jX ;θ);

▶ the joint density is

f (y jX ;θ) = ΠN
i=1f (yi jxi ;θ);

▶ the log-likelihood function divided by N is

1

N
LN(θ) =

1

N

NX
i=1

ln f (yi jxi ;θ):

Model Range of y Density f (y) Common Parametrization

Bernoulli 0 or 1 py (1� p)1�y p = e�x
0�

1+e�x
0�

Poisson 0; 1; 2; : : : e���y=y ! � = ex
0�

Exponential (0;1) �e��y � = ex
0� or 1=� = ex

0�

Normal (�1;1) (2��2)�1=2e�(y��)2=2�2

� = x 0�; �2 = �2
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Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) is the estimator that
maximizes the (conditional) log-likelihood function LN(�).
The MLE is the local maximum that solves the first-order conditions

1

N

@LN(θ)

@θ
=

1

N

NX
i=1

@ ln f (yi jxi ;θ)

@θ
= 0:
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Maximum Likelihood Estimator

This estimator is an extremum estimator on based on the conditional
density of y given x . The gradient vector @LN(θ)

@θ is called the score
vector, as it sums the first derivatives of the log density, and when
evaluated at θ0 it is called the efficient score.
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How Were the Data Generated?

Definition

Simple Random Sampling.
fxi1; : : : ; xiK ; yig

N
i=1 i.i.d. (independent and identically distributed)

This assumption means that

▶ observation i has no information content for observation j 6= i

▶ all observations i come from the same distribution

This assumption is guaranteed by simple random sampling provided
there is no systematic non-response or truncation.
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How Were the Data Generated?

I.i.d. data simplify the maximization as the joint density of the two
variables is simply the product of the two marginal densities.

For example with a normal joint pdf with two observations

f (y1; y2) = fY1 (y1) fY2 (y2) =
1

2��2
e�

[(y1��)2+(y2��)
2]

2�2 :

With dependent observations we would have to maximize the following
likelihood function, where � is the correlation:

1

2��2
p
1� �2

e
� [

(y1��)
2+(y2��)

2
�(y1��)(y2��)]

2�2(1��2) :
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The Score has Expected Value Zero

Likelihood Equation:

Ef

�
g(θ)

�
= Ef

�
@ ln f (y jx ;θ)

@θ

�
=

Z
@ ln f (y jx ;θ)

@θ
f (y jx ;θ)dy = 0:

Example Z
f (y jθ)dy = 1:

@

@θ

Z
f (y jθ)dy = 0:Z

@f (y jθ)
@θ

dy = 0:

@ ln f (y jθ)=@θ = [@f (y jθ)=@θ]=[f (y jθ)]

@f (y jθ)
@θ

=
@ ln f (y jθ)

@θ
f (y jθ):Z

@ ln f (y jθ)
@θ

f (y jθ)dy = 0:
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Fisher Information

The information matrix is the expectation of the outer product of the
score vector,

I = Ef

�
@ ln f (y jx ;θ)

@θ

@ ln f (y jx ;θ)

@θ0

�
:

The Fisher information I is equals the variance of the score, since
@LN(θ)

@θ has mean zero.

▶ Large values of I mean that small changes in θ lead to large
changes in the log-likelihood
! LN(θ) contains considerable information about θ;

▶ Small values of I mean that the maximum is shallow and there are
many nearby values of θ with a similar log-likelihood.
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Information Matrix Equality

The Fisher information I is equals the expectation of the Hessian H :

�Ef

�
H(θ)

�
= �Ef

�
@2 ln f (y jx ;θ)

@θ@θ0

�
= Ef

�
@ ln f (y jx ;θ)

@θ

@ ln f (y jx ;θ)

@θ0

�
:

Example

For vector moment function, e.g., m(y ;θ) =
@ ln f (y jθ)

@θ
with E [m(y ;θ)] = 0;Z

m(y ;θ)f (y jθ)dy = 0:Z �
@m(y ;θ)

@θ0
f (y jθ) +m(y ;θ)

@f (y jθ)
@θ0

�
dy = 0:Z �

@m(y ;θ)

@θ0
f (y jθ) +m(y ;θ)

@ ln f (y jθ)
@θ0

f (y jθ)
�
dy = 0:

E

�
@m(y ;θ)

@θ0

�
= �E

�
m(y ;θ)

@ ln f (y jθ)
@θ0

�
= 0:
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The Information Matrix in Practice
The variance of the sum of random score vector is:
Information matrix equality:

Var

"
nX

i=1

gi (θ)

#
= Var [g (θ)] = �Ef [H (θ)] = �E

�
@2 ln L

@θ@θ0

�
:

After taking the expected value, bθ is substituted for θ. Problem: Taking the expected
value of the second derivative matrix is frequently infeasible.

There exist two alternatives which are asymptotically equivalent:

▶ Ignore the expected value operator:

bI (bθ) = �@2 ln L

@bθ@bθ0 :
▶ Berndt-Hall-Hall-Hausman (BHHH) algorithm

Never take a second derivative and sum over the outer product of the scores:
(first derivatives per observation):

Ǐ (bθ) = nX
i=1

bgibg 0i = nX
i=1

 
@ ln f

�
yi ; bθ�

@bθ
! 

@ ln f
�
yi ; bθ�

@bθ
!

0

:
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Properties of the MLE

▶ Small sample properties of θ̂
▶ may be biased
▶ may have unknown distribution
▶ variance may be biased, even towards zero

▶ Large sample properties of θ̂
▶ consistent
▶ approx. normal
▶ asymptotically efficient
▶ invariant
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Consistency

Law of Large Numbers
As N increases, the distribution of
θ̂ becomes more tightly centered
around θ.

(a) N=3 (b) N=10

(c) N=25 (d) N=100
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Consistency

Likelihood Inequality

E [(1=N) ln L(θ̂)] � E [(1=N) ln L(θ)]:

The expected value of the log-likelihood is maximized at the true value
of the parameters.

Figure 2: �̂, Likelihood and Log-Likelihood as n !1. True � = 0:6.

lim
n!1P(jθ̂ � θj > �) = 0: lim

n!1E [θ̂] = θ:
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Approximate Normality

Central Limit Theorem
As N becomes large,

θ̂
a
� N

�
θ;�

 
E

�
@2LN(θ)

@θ@θ0

�!�1 �
:

Figure 3: Sampling distribution of θ̂ drawn from Bernoulli distribution and
normal distribution at N = 100. True θ = 0:6.
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Efficiency

The precision of the estimate θ̂ is limited by the Fisher information I of the likelihood.

Var
�
θ̂
�
� 1

I (θ)
:

For large samples, this is the so-called Cramér-Rao lower bound for the variance
matrix of consistent asymptotically normal estimators with convergence to normality
of
p
N(θ̂ � θ0) uniform in compact intervals of θ0.

Under the strong assumption of correct specification of the conditional density, the
MLE has the smallest asymptotic variance among root-N consistent estimators.

Example

Since the MLE is unbiased,

E
�
θ̂ � θ

�� θ
�
=

Z �
θ̂ � θ

�
f (y ;θ) dy = 0 regardless of the value of θ:

This expression is zero independent of θ, so its partial derivative with respect to θ
must also be zero. By the product rule, this partial derivative is also equal to

0 =
@

@θ

Z �
θ̂ � θ

�
f (y ;θ) dy =

Z �
θ̂ � θ

� @f
@θ

dy �
Z

f dy :
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Efficiency

Example

For each θ, the likelihood function is a probability density function, and therefore
R

f dy = 1.
By using the chain rule on the partial derivative of ln f and then dividing and multiplying by
f (y ;θ), one can verify that

@f

@θ
= f

@ ln f

@θ
:

Using these two facts, we get Z �
θ̂ � θ

�
f

@ ln f

@θ
dy = 1:

Factoring the integrand gives
R ��

θ̂ � θ
�p

f
� �p

f @ ln f
@θ

�
dy = 1:

Squaring the expression in the integral, the Cauchy-Schwarz inequality yields

1 =

�Z ��
θ̂ � θ

�p
f
�
�
hp

f
@ ln f

@θ

i
dy

�2

�
�Z �

θ̂ � θ
�2

f dy

�
�
�Z �

@ ln f

@θ

�2

f dy

�
:

The first factor is the expected mean-squared error (the variance) of the estimator θ̂, the
second factor is the Fisher Information.
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Invariance
The MLE of γ = c (θ) is bθ = c(bθ) if c (θ) is a continuous and continuous
differentiable function.

▶ This simplifies the log-likelihood,

▶ This allows a function of bθ to serve as MLE if it is desired to analyze the
function of an MLE.

Example

Suppose that the normal log-likelihood is parameterized in terms of the precision
parameter, �2 = 1=�2. The log-likelihood becomes

ln L(�; �2) = �(N=2) ln(2�) + (N=2) ln �2 � �2

2

NX
i=1

(yi � �)2:

The MLE for � is x̄ . But the likelihood equation for �2 is now

@ ln L(�; �2)

@�2
= 1=2

�
N=�2 �

NX
i=1

(yi � �)2
�
= 0;

which has solution �̂2 = N=
PN

i=1
(yi � �)2 = 1=�̂2.
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Invariance

The MLE is also equivariant with respect to certain transformations of
the data.

If y = c(x) where c is one to one and does not depend on the
parameters to be estimated, then the density functions satisfy

fY (y) =
fX (x)

jc 0(x)j
;

and hence the likelihood functions for x and y differ only by a factor
that does not depend on the model parameters.

Example

The MLE parameters of the log-normal distribution are the same as
those of the normal distribution fitted to the logarithm of the data.
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