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From the multivariate to the bivariate regression

Regress yi on two explanatory variables, where x2i is the variable of
interest and x1i (or further variables) are not of interest.

yi = �0 + �2x
2
i + �1x

1
i + "i :

Surprising and useful result:

I We can obtain exactly the same coefficients and residuals from a
regression two demeaned variables

ỹi = �0 + �2x̃
2
i + "i :

I We can obtain exactly the same coefficient and residuals from a
regression of two residualized variables

"
y
i = �2"

2
i + "i :
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Why is the decomposition useful?

Allows breaking a multivariate model with K independent variables into
K bivariate models.

I Relationship between two variables from a multivariate model can be
shown in a two-dimensional scatter plot

I Absorbs fixed effects to reduce computation time (see reghdfe for Stata)

I Allows to separate variability between the regressors (multicollinearity)
and between the residualized variable x̃2i and the dependent variable yi .

I Understand biases in multivariate models tractably.
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How to decompose yi and x2i ?

Partial out x1i from yi and from x2i .

I Regress x2i on all x1i and get residuals "2i :

x2i = 0 + 1x
1
i + "2i ;

this implies Cov(x1i ; "
2
i ) = 0;

I Regress yi on all x1i and get residuals "
y
i :

yi = �0 + �1x
1
i + "

y
i :

This implies Cov(x1i ; "
y
i ) = 0:

From the residuals and the constants 0 and �0 generate

I x̃2i = 0 + "2i ;

I ỹi = �0 + "
y
i :

Finally,
ỹi = �̃0 + �̃1x̃

2
i + "̃i = �0 + �2x̃

2
i + "i :
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Decomposition theorem

Theorem

Decomposition theorem. For multivariate regressions and detrended
regressions, e.g.,

yi = �0 + �2x
2
i + �1x

1
i + "i ;

ỹi = �̃0 + �̃1x̃
2
i + "̃i ;

the same regression coefficients will be obtained with any non-empty
subset of the explanatory variables, such that

�̃1 = �2 and also "̃i = "i :

Examining either set of residuals will convey precisely the same information
about the properties of the unobservable stochastic disturbances.
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Detrended variables

Show that

yi = �0 + �2x
2
i + �1x

1
i + "i (1)

= ỹi = �̃0 + �̃1x̃
2
i + "̃i : (2)

Plug in the variables yi = �0 + �1x
1
i + "

y
i and x2i = 0 + 1x

1
i + "2i in the

equation (1)

yi = �0 + �1x
1
i + "

y
i = �0 + �2(0 + 1x

1
i + "2i ) + �1x

1
i + "i

ỹi = �0 + "
y
i = �0 + �2(0 + "2i ) + (�21 � �1 + �1)x1i + "i :

Because we partialled out x1i using OLS, x1i is mechanically uncorrelated to "2i
and to "

y
i . Therefore, the regression coefficient (�21 � �1 + �1) of the

partialled out variable x1i is zero. The equation simplifies with x̃2i = 0 + "2i to

ỹi = �0 + "
y
i = �0 + �2(0 + "2i ) + "i :
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Detrended variables

Regression anatomy: Only detrending x2i and not yi . The regression constant,
residuals, and the standard errors change but �2 remains

yi = �0 + �1x
1
i + "

y
i = (�0 + �1x̄

1) + �2(0 + "2i ) + ("i + �1x
1
i )

yi = � + �2x̃
2 + �i : (3)
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Residualized variables

ỹi = �0 + "
y
i = �0 + �2(0 + "2i ) + "i

"
y
i = �0 � �0 + �20 + �2"

2
i + "i :

The same result of the FWL Theorem holds as well for a regression of the
residualized variables because �1 = �0 � �20:

"
y
i = �2"

2
i + "i :
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Partition of y

Least squares partitions the vector y into two orthogonal parts

y = ŷ + e = Xb + e = Py + My :

I n � 1 vector of data y

I n � n projection matrix P

I n � n residual maker matrix M

I n � 1 vector of residuals e
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Projection matrix

Py = Xb = X(X ′X)−1X ′y

! P = X(X ′X)−1X ′:

Definition

Properties.

I symmetric such that P = P 0, thus orthogonal

I idempotent such that P = P2, thus indeed a projection

I annihilator matrix PX = X
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Example for projection matrix

Example

Show PX = X(X ′X)−1X ′X = X :

X =

"
1 0
1 1
1 0

#
;X’X =

�
1 1 1
0 1 0

�"1 0
1 1
1 0

#
=

�
3 1
1 1

�
;X’X�1 =

�
1=2 �1=2
�1=2 1:5

�
;

X(X ′X)−1
X
′ =

"
1 0
1 1
1 0

#�
1=2 �1=2
�1=2 3=2

��
1 1 1
0 1 0

�
=

"
1=2 0 1=2

0 1 0
1=2 0 1=2

#

PX =

"
1=2 0 1=2

0 1 0
1=2 0 1=2

#"
1 0
1 1
1 0

#
=

"
1 0
1 1
1 0

#
: (4)

Project y on the column space of X , i.e. regress y on x and predict E [y ] = ŷ :

y =

"
1
2
3

#
;Py =

"
1=2 0 1=2

0 1 0
1=2 0 1=2

#"
1
2
3

#
= ŷ =

"
2
2
2

#
: (5)
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Residual maker matrix

My = e = y � Xb = y � X(X ′X)−1X ′y

My = (I � X(X ′X)−1X ′)y

!M = I � X(X ′X)−1X ′ = (I � P):

Definition

Properties.

I symmetric such that M = M 0

I idempotent such that M = M2

I annihilator matrix MX = 0

I orthogonal to P: PM = MP = 0:
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Example for residual maker matrix

Example

Show MX = (I � X(X ′X)−1X ′)X = (I � P)X = X � X = 0:

I =

"
1 0 0
0 1 0
0 0 1

#
;X =

"
1 0
1 1
1 0

#
;

M = (I � P) =

"
1 0 0
0 1 0
0 0 1

#
�

"
1=2 0 1=2

0 1 0
1=2 0 1=2

#
=

"
1=2 0 �1=2

0 0 0
�1=2 0 1=2

#

MX =

"
1=2 0 �1=2

0 0 0
�1=2 0 1=2

#"
1 0
1 1
1 0

#
=

"
0 0
0 0
0 0

#
: (6)

Obtain residuals from a projection of y on the column space of X , i.e. regress y on x

and predict y � E [y ] = y � ŷ :

y =

"
1
2
3

#
;My =

"
1=2 0 �1=2

0 0 0
�1=2 0 1=2

#"
1
2
3

#
= y � ŷ =

"
�1
0
1

#
: (7)
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Example for residual maker matrix

Example

Column space of X is x0 and x1."
x1
0 = 1 x1

1 = 0 y 1 = 1
x2
0 = 1 x2

1 = 1 y 2 = 2
x3
0 = 1 x3

1 = 0 y 1 = 3

#
; ŷ =

"
2
2
2

#
; y � ŷ =

"
�1
0
1

#
: (8)
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Decomposing the normal equations

The normal equations in matrix form are X 0Xb = X 0y . If X is partitioned into
an interesting segment X2 and an uninteresting X1, normal equations are�

X 0

1X1 X 0

1X2

X 0

2X1 X 0

2X2

� �
b1
b2

�
=

�
X 0

1y

X 0

2y

�
:

The multiplication of the two equations can be done separately

�
X 0

1X1 X 0

1X2

� �b1
b2

�
=
�
X 0

1y
�

(9)

�
X 0

2X1 X 0

2X2

� �b1
b2

�
=
�
X 0

2y
�
: (10)

How can we find an expression for b2 that does not involve b1?
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Solving for b2

Idea: Solve equation (9) for b1 in terms of b2, then substituting that solution
into the equation (10). �

X 0

1X1 X 0

1X2

� �b1
b2

�
=
�
X 0

1y
�

X 0

1X1b1 + X 0

1X2b2 = X 0

1y

X 0

1X1b1 = X 0

1y � X 0

1X2b2

b1 = (X 0

1X1)�1X 0

1y � (X 0

1X1)�1X 0

1X2b2

= (X 0

1X1)�1X 0

1(y � X2b2)

Multiplying out equation (10) gives�
X 0

2X1 X 0

2X2

� �b1
b2

�
=
�
X 0

2y
�

X 0

2X1b1 + X 0

2X2b2 = X 0

2y

Plugging in the solution for b1 gives

X 0

2X1

�
(X 0

1X1)�1X 0

1(y � X2b2)

�
+ X 0

2X2b2 = X 0

2y : (11)
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Solving for b2

X 0

2X1(X 0

1X1)�1X 0

1(y � X2b2) + X 0

2X2b2 = X 0

2y :

The middle part of the first term is X1(X 0

1X1)�1X 0

1. This is the projection
matrix PX1 from a regression of y on X1.

X 0

2PX1y � X 0

2PX1X2b2 + X 0

2X2b2 = X 0

2y :

We can multiply by an identity matrix I without changing anything

X 0

2PX1y � X 0

2PX1X2b2 + X 0

2IX2b2 = X 0

2Iy :

X 0

2Iy � X 0

2PX1y = X 0

2IX2b2 � X 0

2PX1X2b2:

X 0

2(I � PX1)y = X 0

2(I � PX1)X2b2:

(12)

Now (I � PX1) is the residual maker matrix MX1

X 0

2MX1y = X 0

2MX1X2b2:

Solving for b2 gives

b2 = (X 0

2MX1X2)�1X 0

2MX1y :
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Solving for b2

b2 = (X 0

2MX1X2)�1X 0

2MX1y :

The residualizer matrix is symmetric and idempotent, such that
MX1 = MX1MX1 = M 0

X1
MX1 .

b2 = (X 0

2M
0

X1
MX1X2)�1X 0

2M
0

X1
MX1y

=

�
(MX1X2)0(MX1X2)

�
�1

(MX1X2)0(MX1y)

= (X̃ 0

2X̃2)�1X̃ 0

2ỹ : (13)

(14)

This is the OLS solution for b2, with X̃2 instead of X and ỹ instead of y .

I X̃2 are residuals from a regression of X2 on X1

I ỹ are residuals from a regression of y on X1

The solution of the regression coefficients b2 in a regression that includes other
regressors X1 is the same as first regressing all of X2 and y on X1, then regressing the
residuals from the y regression on the residuals from the X2 regression.
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