Econometricks: Short guides to econometrics

Trick 05: Simplifying Linear Regressions using Frisch-Waugh-Lowell

Davud Rostam-Afschar (Uni Mannheim)

1. Frisch-Waugh-Lovell theorem in equation algebra

2. Projection and residual maker matrices

3. Frisch-Waugh-Lovell theorem in matrix algebra

From the multivariate to the bivariate regression

Regress y_i on two explanatory variables, where x_i^2 is the variable of interest and x_i^1 (or further variables) are not of interest.

$$y_i = \beta_0 + \beta_2 x_i^2 + \beta_1 x_i^1 + \varepsilon_i.$$

Surprising and useful result:

We can obtain exactly the same coefficients and residuals from a regression two demeaned variables

$$\tilde{y}_i = \beta_0 + \beta_2 \tilde{x}_i^2 + \varepsilon_i.$$

We can obtain exactly the same coefficient and residuals from a regression of two residualized variables

$$\varepsilon_i^y = \beta_2 \varepsilon_i^2 + \varepsilon_i.$$

Why is the decomposition useful?

Allows breaking a multivariate model with K independent variables into K bivariate models.

- Relationship between two variables from a multivariate model can be shown in a two-dimensional scatter plot
- Absorbs fixed effects to reduce computation time (see reghdfe for Stata)
- Allows to separate variability between the regressors (multicollinearity) and between the residualized variable x_i² and the dependent variable y_i.
- Understand biases in multivariate models tractably.

How to decompose y_i and x_i^2 ?

Partial out x_i^1 from y_i and from x_i^2 .

• Regress x_i^2 on all x_i^1 and get residuals ε_i^2 :

$$x_i^2 = \gamma_0 + \gamma_1 x_i^1 + \varepsilon_i^2,$$

this implies $Cov(x_i^1, \varepsilon_i^2) = 0$,

• Regress y_i on all x_i^1 and get residuals ε_i^y :

$$y_i = \delta_0 + \delta_1 x_i^1 + \varepsilon_i^y.$$

This implies $Cov(x_i^1, \varepsilon_i^y) = 0.$

From the residuals and the constants γ_0 and δ_0 generate

$$\begin{array}{l} \blacktriangleright \quad \widetilde{x}_i^2 = \gamma_0 + \varepsilon_i^2, \\ \blacktriangleright \quad \widetilde{y}_i = \delta_0 + \varepsilon_i^y. \end{array}$$

Finally,

$$\widetilde{y}_i = \widetilde{eta}_0 + \widetilde{eta}_1 \widetilde{x}_i^2 + \widetilde{arepsilon}_i = eta_0 + eta_2 \widetilde{x}_i^2 + arepsilon_i.$$

Decomposition theorem

Theorem

Decomposition theorem. For multivariate regressions and detrended regressions, e.g.,

$$egin{aligned} y_i &= eta_0 + eta_2 x_i^2 + eta_1 x_i^1 + arepsilon_i, \ & ilde y_i &= ilde eta_0 + ilde eta_1 ilde x_i^2 + ilde arepsilon_i, \end{aligned}$$

the same regression coefficients will be obtained with any non-empty subset of the explanatory variables, such that

$$ilde{eta}_1=eta_2$$
 and also $ilde{arepsilon}_i=arepsilon_i.$

Examining either set of residuals will convey precisely the same information about the properties of the unobservable stochastic disturbances.

Detrended variables

Show that

$$y_i = \beta_0 + \beta_2 x_i^2 + \beta_1 x_i^1 + \varepsilon_i$$
(1)
= $\tilde{y}_i = \tilde{\beta}_0 + \tilde{\beta}_1 \tilde{x}_i^2 + \tilde{\varepsilon}_i.$ (2)

Plug in the variables $y_i = \delta_0 + \delta_1 x_i^1 + \varepsilon_i^y$ and $x_i^2 = \gamma_0 + \gamma_1 x_i^1 + \varepsilon_i^2$ in the equation (1)

$$\begin{aligned} y_i &= \delta_0 + \delta_1 x_i^1 + \varepsilon_i^y = \beta_0 + \beta_2 (\gamma_0 + \gamma_1 x_i^1 + \varepsilon_i^2) + \beta_1 x_i^1 + \varepsilon_i \\ \tilde{y}_i &= \delta_0 + \varepsilon_i^y = \beta_0 + \beta_2 (\gamma_0 + \varepsilon_i^2) + (\beta_2 \gamma_1 - \delta_1 + \beta_1) x_i^1 + \varepsilon_i. \end{aligned}$$

Because we partialled out x_i^1 using OLS, x_i^1 is mechanically uncorrelated to ε_i^2 and to ε_i^y . Therefore, the regression coefficient $(\beta_2\gamma_1 - \delta_1 + \beta_1)$ of the partialled out variable x_i^1 is zero. The equation simplifies with $\tilde{x}_i^2 = \gamma_0 + \varepsilon_i^2$ to

$$ilde{y}_i = \delta_0 + arepsilon_i^y = eta_0 + eta_2(\gamma_0 + arepsilon_i^2) + arepsilon_i$$

Regression anatomy: Only detrending x_i^2 and not y_i . The regression constant, residuals, and the standard errors change but β_2 remains

$$y_{i} = \delta_{0} + \delta_{1}x_{i}^{1} + \varepsilon_{i}^{y} = (\beta_{0} + \delta_{1}\bar{x}^{1}) + \beta_{2}(\gamma_{0} + \varepsilon_{i}^{2}) + (\varepsilon_{i} + \delta_{1}x_{i}^{1})$$

$$y_{i} = \kappa + \beta_{2}\tilde{x}^{2} + \epsilon_{i}.$$
(3)

Residualized variables

$$egin{array}{rcl} ilde{y}_i = \delta_0 + arepsilon_2(\gamma_0 + arepsilon_i^2) + arepsilon_i \ arepsilon_i^y &= eta_0 - \delta_0 + eta_2\gamma_0 + eta_2arepsilon_i^2 + arepsilon_i \end{array}$$

The same result of the FWL Theorem holds as well for a regression of the residualized variables because $\beta_1 = \delta_0 - \beta_2 \gamma_0$:

$$\varepsilon_i^y = \beta_2 \varepsilon_i^2 + \varepsilon_i.$$

Least squares partitions the vector \boldsymbol{y} into two orthogonal parts

$$y = \hat{y} + e = Xb + e = Py + My.$$

- $\blacktriangleright n \times 1 \text{ vector of data } \boldsymbol{y}$
- ▶ $n \times n$ projection matrix **P**
- $n \times n$ residual maker matrix M
- $n \times 1$ vector of residuals **e**

Projection matrix

$$Py = Xb = X(X'X)^{-1}X'y$$

 $\rightarrow P = X(X'X)^{-1}X'.$

Definition

Properties.

- symmetric such that P = P', thus orthogonal
- idempotent such that $P = P^2$, thus indeed a projection
- annihilator matrix PX = X

Example for projection matrix

Example

Show $PX = X(X'X)^{-1}X'X = X$.

$$\mathbf{X} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}; \mathbf{X}'\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}; \mathbf{X}'\mathbf{X}^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1.5 \end{bmatrix};$$
$$\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 3/2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix}$$
$$\mathbf{P}\mathbf{X} = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}.$$
(4)

Project y on the column space of X, i.e. regress y on x and predict $E[y] = \hat{y}$.

$$\mathbf{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}; \mathbf{P}\mathbf{y} = \begin{bmatrix} 1/2 & 0 & 1/2\\0 & 1 & 0\\1/2 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \hat{\mathbf{y}} = \begin{bmatrix} 2\\2\\2 \end{bmatrix}.$$
(5)

Residual maker matrix

$$My = e = y - Xb = y - X(X'X)^{-1}X'y$$

$$My = (I - X(X'X)^{-1}X')y$$

$$\rightarrow \mathbf{M} = \mathbf{I} - \mathbf{X} (\mathbf{X'X})^{-1} \mathbf{X'} = (\mathbf{I} - \mathbf{P}).$$

Definition

Properties.

- ▶ symmetric such that **M** = **M**^t
- idempotent such that $\mathbf{M} = \mathbf{M}^2$
- annihilator matrix MX = 0

• orthogonal to \mathbf{P} : $\mathbf{PM} = \mathbf{MP} = 0$.

Example for residual maker matrix

Example

Show
$$MX = (I - X(X'X)^{-1}X')X = (I - P)X = X - X = 0.$$

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \mathbf{X} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix};$$
$$\mathbf{M} = (\mathbf{I} - \mathbf{P}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ 0 & 0 & 0 \\ -1/2 & 0 & 1/2 \end{bmatrix}$$
$$\mathbf{MX} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ 0 & 0 & 0 \\ -1/2 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$
(6)

Obtain residuals from a projection of y on the column space of X, i.e. regress y on x and predict $y - E[y] = y - \hat{y}$.

$$\mathbf{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}; \mathbf{M}\mathbf{y} = \begin{bmatrix} 1/2 & 0 & -1/2\\0 & 0 & 0\\-1/2 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} -1\\0\\1 \end{bmatrix}.$$
(7)

Example for residual maker matrix

Example

Column space of X is x_0 and x_1 .

$$\begin{bmatrix} x_0^1 = 1 & x_1^1 = 0 & y^1 = 1 \\ x_0^2 = 1 & x_1^2 = 1 & y^2 = 2 \\ x_0^3 = 1 & x_1^3 = 0 & y^1 = 3 \end{bmatrix}; \hat{y} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}; y - \hat{y} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

(8)

Decomposing the normal equations

The normal equations in matrix form are X'Xb = X'y. If X is partitioned into an interesting segment X_2 and an uninteresting X_1 , normal equations are

$$\begin{bmatrix} \mathbf{X}_1' \mathbf{X}_1 & \mathbf{X}_1' \mathbf{X}_2 \\ \mathbf{X}_2' \mathbf{X}_1 & \mathbf{X}_2' \mathbf{X}_2 \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{X}_1' \mathbf{y} \\ \mathbf{X}_2' \mathbf{y} \end{bmatrix}$$

The multiplication of the two equations can be done separately

$$\begin{bmatrix} \mathbf{X}_{1}^{\prime} \mathbf{X}_{1} & \mathbf{X}_{1}^{\prime} \mathbf{X}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{1}^{\prime} \mathbf{y} \end{bmatrix}$$
(9)
$$\begin{bmatrix} \mathbf{X}_{2}^{\prime} \mathbf{X}_{1} & \mathbf{X}_{2}^{\prime} \mathbf{X}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{2}^{\prime} \mathbf{y} \end{bmatrix}$$
(10)

How can we find an expression for b_2 that does not involve b_1 ?

Solving for b_2

Idea: Solve equation (9) for b_1 in terms of b_2 , then substituting that solution into the equation (10).

$$\begin{bmatrix} X_1'X_1 & X_1'X_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} X_1'y \end{bmatrix}$$
$$X_1'X_1b_1 + X_1'X_2b_2 = X_1'y$$
$$X_1'X_1b_1 = X_1'y - X_1'X_2b_2$$
$$b_1 = (X_1'X_1)^{-1}X_1'y - (X_1'X_1)^{-1}X_1'X_2b_2$$
$$= (X_1'X_1)^{-1}X_1'(y - X_2b_2)$$

Multiplying out equation (10) gives

$$\begin{bmatrix} \mathbf{X}_{2}'\mathbf{X}_{1} & \mathbf{X}_{2}'\mathbf{X}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{2}'\mathbf{y} \end{bmatrix}$$
$$\mathbf{X}_{2}'\mathbf{X}_{1}\mathbf{b}_{1} + \mathbf{X}_{2}'\mathbf{X}_{2}\mathbf{b}_{2} = \mathbf{X}_{2}'\mathbf{y}$$

Plugging in the solution for \boldsymbol{b}_1 gives

$$\boldsymbol{X}_{2}^{\prime}\boldsymbol{X}_{1}\left((\boldsymbol{X}_{1}^{\prime}\boldsymbol{X}_{1})^{-1}\boldsymbol{X}_{1}^{\prime}(\boldsymbol{y}-\boldsymbol{X}_{2}\boldsymbol{b}_{2})\right)+\boldsymbol{X}_{2}^{\prime}\boldsymbol{X}_{2}\boldsymbol{b}_{2}=\boldsymbol{X}_{2}^{\prime}\boldsymbol{y}.$$
 (11)

Solving for b_2

$$\boldsymbol{X}_2' \boldsymbol{X}_1 (\boldsymbol{X}_1' \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1' (\boldsymbol{y} - \boldsymbol{X}_2 \boldsymbol{b}_2) + \boldsymbol{X}_2' \boldsymbol{X}_2 \boldsymbol{b}_2 = \boldsymbol{X}_2' \boldsymbol{y}.$$

The middle part of the first term is $X_1(X'_1X_1)^{-1}X'_1$. This is the projection matrix P_{X_1} from a regression of y on X_1 .

$$X_2'P_{X_1}y - X_2'P_{X_1}X_2b_2 + X_2'X_2b_2 = X_2'y.$$

We can multiply by an identity matrix *I* without changing anything

$$\begin{aligned} & X_2' P_{X_1} y - X_2' P_{X_1} X_2 b_2 + X_2' I X_2 b_2 = X_2' I y. \\ & X_2' I y - X_2' P_{X_1} y = X_2' I X_2 b_2 - X_2' P_{X_1} X_2 b_2. \\ & X_2' (I - P_{X_1}) y = X_2' (I - P_{X_1}) X_2 b_2. \end{aligned}$$

Now $(I - P_{X_1})$ is the residual maker matrix M_{X_1}

$$\boldsymbol{X}_2' \boldsymbol{M}_{X_1} \boldsymbol{y} = \boldsymbol{X}_2' \boldsymbol{M}_{X_1} \boldsymbol{X}_2 \boldsymbol{b}_2.$$

Solving for \boldsymbol{b}_2 gives

$$m{b}_2 = (m{X}_2'm{M}_{X_1}m{X}_2)^{-1}m{X}_2'm{M}_{X_1}m{y}_1$$

(12)

Solving for b_2

$$b_2 = (X'_2 M_{X_1} X_2)^{-1} X'_2 M_{X_1} y$$

The residualizer matrix is symmetric and idempotent, such that $M_{X_1} = M_{X_1}M_{X_1} = M'_{X_1}M_{X_1}$.

$$b_{2} = (X_{2}'M_{X_{1}}'M_{X_{1}}X_{2})^{-1}X_{2}'M_{X_{1}}'M_{X_{1}}y$$

$$= \left((M_{X_{1}}X_{2})'(M_{X_{1}}X_{2})\right)^{-1}(M_{X_{1}}X_{2})'(M_{X_{1}}y)$$

$$= (\tilde{X}_{2}'\tilde{X}_{2})^{-1}\tilde{X}_{2}'\tilde{y}.$$
(13)
(14)

This is the OLS solution for b_2 , with \tilde{X}_2 instead of X and \tilde{y} instead of y.

- \tilde{X}_2 are residuals from a regression of X_2 on X_1
- \tilde{y} are residuals from a regression of y on X_1

The solution of the regression coefficients b_2 in a regression that includes other regressors X_1 is the same as first regressing all of X_2 and y on X_1 , then regressing the residuals from the y regression on the residuals from the X_2 regression.

References I

- ANGRIST, J. D., AND J.-S. PISCHKE (2009): Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press, Chapter 3.
- FILOSO, V. (2013): "Regression Anatomy, Revealed," *The Stata Journal*, 13(1), 92–106.
- FRISCH, R., AND F. V. WAUGH (1933): "Partial Time Regressions as Compared with Individual Trends," *Econometrica*, 1(4), 387–401.
- LOVELL, M. C. (2008): "A Simple Proof of the FWL Theorem," *The Journal* of *Economic Education*, 39(1), 88–91.