Econometricks: Short guides to econometrics

Trick 05: Simplifying Linear Regressions using Frisch-Waugh-Lowell
Davud Rostam-Afschar (Uni Mannheim)

Content

1. Frisch-Waugh-Lovell theorem in equation algebra
2. Projection and residual maker matrices
3. Frisch-Waugh-Lovell theorem in matrix algebra

From the multivariate to the bivariate regression

Regress y_{i} on two explanatory variables, where x_{i}^{2} is the variable of interest and x_{i}^{1} (or further variables) are not of interest.

$$
y_{i}=\beta_{0}+\beta_{2} x_{i}^{2}+\beta_{1} x_{i}^{1}+\varepsilon_{i} .
$$

Surprising and useful result:

- We can obtain exactly the same coefficients and residuals from a regression two demeaned variables

$$
\tilde{y}_{i}=\beta_{0}+\beta_{2} \tilde{x}_{i}^{2}+\varepsilon_{i} .
$$

- We can obtain exactly the same coefficient and residuals from a regression of two residualized variables

$$
\varepsilon_{i}^{y}=\beta_{2} \varepsilon_{i}^{2}+\varepsilon_{i} .
$$

Why is the decomposition useful?

Allows breaking a multivariate model with K independent variables into K bivariate models.

- Relationship between two variables from a multivariate model can be shown in a two-dimensional scatter plot
- Absorbs fixed effects to reduce computation time (see reghdfe for Stata)
- Allows to separate variability between the regressors (multicollinearity) and between the residualized variable \tilde{x}_{i}^{2} and the dependent variable y_{i}.
- Understand biases in multivariate models tractably.

How to decompose y_{i} and x_{i}^{2} ?

Partial out x_{i}^{1} from y_{i} and from x_{i}^{2}.

- Regress x_{i}^{2} on all x_{i}^{1} and get residuals ε_{i}^{2} :

$$
x_{i}^{2}=\gamma_{0}+\gamma_{1} x_{i}^{1}+\varepsilon_{i}^{2}
$$

this implies $\operatorname{Cov}\left(x_{i}^{1}, \varepsilon_{i}^{2}\right)=0$,

- Regress y_{i} on all x_{i}^{1} and get residuals ε_{i}^{y} :

$$
y_{i}=\delta_{0}+\delta_{1} x_{i}^{1}+\varepsilon_{i}^{y}
$$

This implies $\operatorname{Cov}\left(x_{i}^{1}, \varepsilon_{i}^{y}\right)=0$.
From the residuals and the constants γ_{0} and δ_{0} generate

- $\tilde{x}_{i}^{2}=\gamma_{0}+\varepsilon_{i}^{2}$,
- $\tilde{y}_{i}=\delta_{0}+\varepsilon_{i}^{y}$.

Finally,

$$
\tilde{y}_{i}=\tilde{\beta}_{0}+\tilde{\beta}_{1} \tilde{x}_{i}^{2}+\tilde{\varepsilon}_{i}=\beta_{0}+\beta_{2} \tilde{x}_{i}^{2}+\varepsilon_{i}
$$

Decomposition theorem

Theorem

Decomposition theorem. For multivariate regressions and detrended regressions, e.g.,

$$
\begin{gathered}
y_{i}=\beta_{0}+\beta_{2} x_{i}^{2}+\beta_{1} x_{i}^{1}+\varepsilon_{i} \\
\tilde{y}_{i}=\tilde{\beta}_{0}+\tilde{\beta}_{1} \tilde{x}_{i}^{2}+\tilde{\varepsilon}_{i}
\end{gathered}
$$

the same regression coefficients will be obtained with any non-empty subset of the explanatory variables, such that

$$
\tilde{\beta}_{1}=\beta_{2} \text { and also } \tilde{\varepsilon}_{i}=\varepsilon_{i} .
$$

Examining either set of residuals will convey precisely the same information about the properties of the unobservable stochastic disturbances.

Detrended variables

Show that

$$
\begin{align*}
y_{i} & =\beta_{0}+\beta_{2} x_{i}^{2}+\beta_{1} x_{i}^{1}+\varepsilon_{i} \tag{1}\\
& =\tilde{y}_{i}=\tilde{\beta}_{0}+\tilde{\beta}_{1} \tilde{x}_{i}^{2}+\tilde{\varepsilon}_{i} \tag{2}
\end{align*}
$$

Plug in the variables $y_{i}=\delta_{0}+\delta_{1} x_{i}^{1}+\varepsilon_{i}^{y}$ and $x_{i}^{2}=\gamma_{0}+\gamma_{1} x_{i}^{1}+\varepsilon_{i}^{2}$ in the equation (1)

$$
\begin{aligned}
& y_{i}=\delta_{0}+\delta_{1} x_{i}^{1}+\varepsilon_{i}^{y}=\beta_{0}+\beta_{2}\left(\gamma_{0}+\gamma_{1} x_{i}^{1}+\varepsilon_{i}^{2}\right)+\beta_{1} x_{i}^{1}+\varepsilon_{i} \\
& \tilde{y}_{i}=\delta_{0}+\varepsilon_{i}^{y}=\beta_{0}+\beta_{2}\left(\gamma_{0}+\varepsilon_{i}^{2}\right)+\left(\beta_{2} \gamma_{1}-\delta_{1}+\beta_{1}\right) x_{i}^{1}+\varepsilon_{i} .
\end{aligned}
$$

Because we partialled out x_{i}^{1} using OLS, x_{i}^{1} is mechanically uncorrelated to ε_{i}^{2} and to ε_{i}^{y}. Therefore, the regression coefficient $\left(\beta_{2} \gamma_{1}-\delta_{1}+\beta_{1}\right)$ of the partialled out variable x_{i}^{1} is zero. The equation simplifies with $\tilde{x}_{i}^{2}=\gamma_{0}+\varepsilon_{i}^{2}$ to

$$
\tilde{y}_{i}=\delta_{0}+\varepsilon_{i}^{y}=\beta_{0}+\beta_{2}\left(\gamma_{0}+\varepsilon_{i}^{2}\right)+\varepsilon_{i} .
$$

Detrended variables

Regression anatomy: Only detrending x_{i}^{2} and not y_{i}. The regression constant, residuals, and the standard errors change but β_{2} remains

$$
\begin{align*}
y_{i}=\delta_{0}+\delta_{1} x_{i}^{1}+\varepsilon_{i}^{y} & =\left(\beta_{0}+\delta_{1} \bar{x}^{1}\right)+\beta_{2}\left(\gamma_{0}+\varepsilon_{i}^{2}\right)+\left(\varepsilon_{i}+\delta_{1} x_{i}^{1}\right) \\
y_{i} & =\kappa+\beta_{2} \tilde{x}^{2}+\epsilon_{i} . \tag{3}
\end{align*}
$$

Residualized variables

$$
\begin{aligned}
\tilde{y}_{i}=\delta_{0}+\varepsilon_{i}^{y} & =\beta_{0}+\beta_{2}\left(\gamma_{0}+\varepsilon_{i}^{2}\right)+\varepsilon_{i} \\
\varepsilon_{i}^{y} & =\beta_{0}-\delta_{0}+\beta_{2} \gamma_{0}+\beta_{2} \varepsilon_{i}^{2}+\varepsilon_{i}
\end{aligned}
$$

The same result of the FWL Theorem holds as well for a regression of the residualized variables because $\beta_{1}=\delta_{0}-\beta_{2} \gamma_{0}$:

$$
\varepsilon_{i}^{y}=\beta_{2} \varepsilon_{i}^{2}+\varepsilon_{i}
$$

Partition of y

Least squares partitions the vector \boldsymbol{y} into two orthogonal parts

$$
y=\hat{y}+e=X b+e=P y+M y .
$$

- $n \times 1$ vector of data \boldsymbol{y}
- $n \times n$ projection matrix \boldsymbol{P}
- $n \times n$ residual maker matrix \boldsymbol{M}
- $n \times 1$ vector of residuals \boldsymbol{e}

Projection matrix

$$
\begin{aligned}
P y= & X b=X\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
& \rightarrow P=X\left(X^{\prime} X\right)^{-1} X^{\prime}
\end{aligned}
$$

Definition

Properties.

- symmetric such that $\boldsymbol{P}=\boldsymbol{P}^{\prime}$, thus orthogonal
- idempotent such that $\boldsymbol{P}=\boldsymbol{P}^{2}$, thus indeed a projection
- annihilator matrix $\boldsymbol{P X}=\boldsymbol{X}$

Example for projection matrix

Example

Show $\boldsymbol{P} \boldsymbol{X}=\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{X}=\boldsymbol{X}$.

$$
\mathbf{X}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right] ; \mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right] ; \mathbf{X}^{\prime} \mathbf{X}^{-1}=\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1.5
\end{array}\right]
$$

$$
\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 3 / 2
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right]
$$

$$
P X=\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \tag{4}\\
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right]
$$

Project \boldsymbol{y} on the column space of \boldsymbol{X}, i.e. regress \boldsymbol{y} on \boldsymbol{x} and predict $E[\boldsymbol{y}]=\hat{\boldsymbol{y}}$.

$$
\boldsymbol{y}=\left[\begin{array}{l}
1 \tag{5}\\
2 \\
3
\end{array}\right] ; \boldsymbol{P} \boldsymbol{y}=\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\hat{\boldsymbol{y}}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right] .
$$

Residual maker matrix

$$
\begin{aligned}
M y= & e=\boldsymbol{y}-\boldsymbol{X b}=\boldsymbol{y}-\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y} \\
M y= & \left(\boldsymbol{I}-\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}\right) \boldsymbol{y} \\
& \rightarrow \boldsymbol{M}=\boldsymbol{I}-\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}=(\boldsymbol{I}-\boldsymbol{P})
\end{aligned}
$$

Definition

Properties.

- symmetric such that $\boldsymbol{M}=\boldsymbol{M}^{\prime}$
- idempotent such that $\boldsymbol{M}=\boldsymbol{M}^{2}$
- annihilator matrix $\mathbf{M X}=0$
- orthogonal to $\boldsymbol{P}: \mathbf{P M}=\mathbf{M P}=0$.

Example for residual maker matrix

Example

Show $\boldsymbol{M} \boldsymbol{X}=\left(\boldsymbol{I}-\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}\right) \boldsymbol{X}=(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{X}=\boldsymbol{X}-\boldsymbol{X}=\mathbf{0}$.

$$
\begin{align*}
& \mathbf{I}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] ; \mathbf{X}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right] ; \\
& \mathbf{M}=(\boldsymbol{I}-\boldsymbol{P})=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & 0 & -1 / 2 \\
0 & 0 & 0 \\
-1 / 2 & 0 & 1 / 2
\end{array}\right] \\
& \mathbf{M} \boldsymbol{X}=\left[\begin{array}{ccc}
1 / 2 & 0 & -1 / 2 \\
0 & 0 & 0 \\
-1 / 2 & 0 & 1 / 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] . \tag{6}
\end{align*}
$$

Obtain residuals from a projection of \boldsymbol{y} on the column space of \boldsymbol{X}, i.e. regress \boldsymbol{y} on \boldsymbol{x} and predict $\boldsymbol{y}-E[\boldsymbol{y}]=\boldsymbol{y}-\hat{\boldsymbol{y}}$.

$$
\boldsymbol{y}=\left[\begin{array}{l}
1 \tag{7}\\
2 \\
3
\end{array}\right] ; \boldsymbol{M} \boldsymbol{y}=\left[\begin{array}{ccc}
1 / 2 & 0 & -1 / 2 \\
0 & 0 & 0 \\
-1 / 2 & 0 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\boldsymbol{y}-\hat{\boldsymbol{y}}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] .
$$

Example for residual maker matrix

Example

Column space of \mathbf{X} is \mathbf{x}_{0} and \mathbf{x}_{1}.

$$
\left[\begin{array}{lll}
x_{0}^{1}=1 & x_{1}^{1}=0 & y^{1}=1 \tag{8}\\
x_{0}^{2}=1 & x_{1}^{2}=1 & y^{2}=2 \\
x_{0}^{3}=1 & x_{1}^{3}=0 & y^{1}=3
\end{array}\right] ; \hat{\boldsymbol{y}}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right] ; \boldsymbol{y}-\hat{\boldsymbol{y}}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] .
$$

Decomposing the normal equations

The normal equations in matrix form are $\boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{b}=\boldsymbol{X}^{\prime} \boldsymbol{y}$. If \boldsymbol{X} is partitioned into an interesting segment \boldsymbol{X}_{2} and an uninteresting \boldsymbol{X}_{1}, normal equations are

$$
\left[\begin{array}{ll}
\boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{1} & \boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{2} \\
\boldsymbol{X}_{2}^{\prime} \boldsymbol{X}_{1} & \boldsymbol{X}_{2}^{\prime} \boldsymbol{X}_{2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{X}_{1}^{\prime} \boldsymbol{y} \\
\boldsymbol{X}_{2}^{\prime} \boldsymbol{y}
\end{array}\right] .
$$

The multiplication of the two equations can be done separately

$$
\begin{align*}
& {\left[\begin{array}{ll}
\boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{1} & \boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2}
\end{array}\right]=\left[\boldsymbol{X}_{1}^{\prime} \boldsymbol{y}\right]} \tag{9}\\
& {\left[\begin{array}{ll}
\boldsymbol{X}_{2}^{\prime} \boldsymbol{X}_{1} & \boldsymbol{X}_{2}^{\prime} \boldsymbol{X}_{2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2}
\end{array}\right]=\left[\boldsymbol{X}_{2}^{\prime} \boldsymbol{y}\right] .} \tag{10}
\end{align*}
$$

How can we find an expression for \boldsymbol{b}_{2} that does not involve \boldsymbol{b}_{1} ?

Solving for \boldsymbol{b}_{2}

Idea: Solve equation (9) for \boldsymbol{b}_{1} in terms of \boldsymbol{b}_{2}, then substituting that solution into the equation (10).

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{1} & \boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2}
\end{array}\right]=\left[\boldsymbol{X}_{1}^{\prime} \boldsymbol{y}\right] } \\
& \boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{1} \boldsymbol{b}_{1}+\boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{2} \boldsymbol{b}_{2}=\boldsymbol{X}_{1}^{\prime} \boldsymbol{y} \\
& \boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{1} \boldsymbol{b}_{1}=\boldsymbol{X}_{1}^{\prime} \boldsymbol{y}-\boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{2} \boldsymbol{b}_{2} \\
\boldsymbol{b}_{1}= & \left(\boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{1}\right)^{-1} \boldsymbol{X}_{1}^{\prime} \boldsymbol{y}-\left(\boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{1}\right)^{-1} \boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{2} \boldsymbol{b}_{2} \\
= & \left(\boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{1}\right)^{-1} \boldsymbol{X}_{1}^{\prime}\left(\boldsymbol{y}-\boldsymbol{X}_{2} \boldsymbol{b}_{2}\right)
\end{aligned}
$$

Multiplying out equation (10) gives

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\boldsymbol{X}_{2}^{\prime} \boldsymbol{X}_{1} & \boldsymbol{X}_{2}^{\prime} \boldsymbol{X}_{2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2}
\end{array}\right]=\left[\boldsymbol{X}_{2}^{\prime} \boldsymbol{y}\right]} \\
& \boldsymbol{X}_{2}^{\prime} \boldsymbol{X}_{1} \boldsymbol{b}_{1}+\boldsymbol{X}_{2}^{\prime} \boldsymbol{X}_{2} \boldsymbol{b}_{2}=\boldsymbol{X}_{2}^{\prime} \boldsymbol{y}
\end{aligned}
$$

Plugging in the solution for \boldsymbol{b}_{1} gives

$$
\begin{equation*}
\boldsymbol{X}_{2}^{\prime} \boldsymbol{X}_{1}\left(\left(\boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{1}\right)^{-1} \boldsymbol{X}_{1}^{\prime}\left(\boldsymbol{y}-\boldsymbol{X}_{2} \boldsymbol{b}_{2}\right)\right)+\boldsymbol{X}_{2}^{\prime} \boldsymbol{X}_{2} \boldsymbol{b}_{2}=\boldsymbol{X}_{2}^{\prime} \boldsymbol{y} \tag{11}
\end{equation*}
$$

Solving for \boldsymbol{b}_{2}

$$
\boldsymbol{X}_{2}^{\prime} \boldsymbol{X}_{1}\left(\boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{1}\right)^{-1} \boldsymbol{X}_{1}^{\prime}\left(\boldsymbol{y}-\boldsymbol{X}_{2} \boldsymbol{b}_{2}\right)+\boldsymbol{X}_{2}^{\prime} \boldsymbol{X}_{2} \boldsymbol{b}_{2}=\boldsymbol{X}_{2}^{\prime} \boldsymbol{y}
$$

The middle part of the first term is $\boldsymbol{X}_{1}\left(\boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{1}\right)^{-1} \boldsymbol{X}_{1}^{\prime}$. This is the projection matrix $\boldsymbol{P}_{X_{1}}$ from a regression of \boldsymbol{y} on \boldsymbol{X}_{1}.

$$
\boldsymbol{X}_{2}^{\prime} \boldsymbol{P}_{X_{1}} \boldsymbol{y}-\boldsymbol{X}_{2}^{\prime} \boldsymbol{P}_{X_{1}} \boldsymbol{X}_{2} \boldsymbol{b}_{2}+\boldsymbol{X}_{2}^{\prime} \boldsymbol{X}_{2} \boldsymbol{b}_{2}=\boldsymbol{X}_{2}^{\prime} \boldsymbol{y}
$$

We can multiply by an identity matrix \boldsymbol{I} without changing anything

$$
\begin{align*}
& \boldsymbol{X}_{2}^{\prime} \boldsymbol{P}_{X_{1}} \boldsymbol{y}-\boldsymbol{X}_{2}^{\prime} \boldsymbol{P}_{X_{1}} \boldsymbol{X}_{2} \boldsymbol{b}_{2}+\boldsymbol{X}_{2}^{\prime} \boldsymbol{I} \boldsymbol{X}_{2} \boldsymbol{b}_{2}=\boldsymbol{X}_{2}^{\prime} \boldsymbol{I} \boldsymbol{y} \\
& \boldsymbol{X}_{2}^{\prime} \boldsymbol{I} \boldsymbol{y}-\boldsymbol{X}_{2}^{\prime} \boldsymbol{P}_{X_{1}} \boldsymbol{y}=\boldsymbol{X}_{2}^{\prime} \boldsymbol{I} \boldsymbol{X}_{2} \boldsymbol{b}_{2}-\boldsymbol{X}_{2}^{\prime} \boldsymbol{P}_{X_{1}} \boldsymbol{X}_{2} \boldsymbol{b}_{2} . \\
& \boldsymbol{X}_{2}^{\prime}\left(\boldsymbol{I}-\boldsymbol{P}_{X_{1}}\right) \boldsymbol{y}=\boldsymbol{X}_{2}^{\prime}\left(\boldsymbol{I}-\boldsymbol{P}_{X_{1}}\right) \boldsymbol{X}_{2} \boldsymbol{b}_{2} . \tag{12}
\end{align*}
$$

Now $\left(\boldsymbol{I}-\boldsymbol{P}_{X_{1}}\right)$ is the residual maker matrix $\boldsymbol{M}_{X_{1}}$

$$
\boldsymbol{X}_{2}^{\prime} \boldsymbol{M}_{X_{1}} \boldsymbol{y}=\boldsymbol{X}_{2}^{\prime} \boldsymbol{M}_{X_{1}} \boldsymbol{X}_{2} \boldsymbol{b}_{2}
$$

Solving for \boldsymbol{b}_{2} gives

$$
\boldsymbol{b}_{2}=\left(\boldsymbol{X}_{2}^{\prime} \boldsymbol{M}_{X_{1}} \boldsymbol{X}_{2}\right)^{-1} \boldsymbol{X}_{2}^{\prime} \boldsymbol{M}_{X_{1}} \boldsymbol{y} .
$$

Solving for \boldsymbol{b}_{2}

$$
\boldsymbol{b}_{2}=\left(\boldsymbol{X}_{2}^{\prime} \boldsymbol{M}_{X_{1}} \boldsymbol{X}_{2}\right)^{-1} \boldsymbol{X}_{2}^{\prime} \boldsymbol{M}_{X_{1}} \boldsymbol{y}
$$

The residualizer matrix is symmetric and idempotent, such that $\boldsymbol{M}_{X_{1}}=\boldsymbol{M}_{X_{1}} \boldsymbol{M}_{X_{1}}=\boldsymbol{M}_{X_{1}}^{\prime} \boldsymbol{M}_{X_{1}}$.

$$
\begin{align*}
\boldsymbol{b}_{2} & =\left(\boldsymbol{X}_{2}^{\prime} \boldsymbol{M}_{X_{1}}^{\prime} \boldsymbol{M}_{X_{1}} \boldsymbol{X}_{2}\right)^{-1} \boldsymbol{X}_{2}^{\prime} \boldsymbol{M}_{X_{1}}^{\prime} \boldsymbol{M}_{X_{1}} \boldsymbol{y} \\
& =\left(\left(\boldsymbol{M}_{X_{1}} \boldsymbol{X}_{2}\right)^{\prime}\left(\boldsymbol{M}_{X_{1}} \boldsymbol{X}_{2}\right)\right)^{-1}\left(\boldsymbol{M}_{X_{1}} \boldsymbol{X}_{2}\right)^{\prime}\left(\boldsymbol{M}_{X_{1}} \boldsymbol{y}\right) \\
& =\left(\tilde{\boldsymbol{X}}_{2}^{\prime} \tilde{\boldsymbol{X}}_{2}\right)^{-1} \tilde{\boldsymbol{X}}_{2}^{\prime} \tilde{\boldsymbol{y}} \tag{13}
\end{align*}
$$

This is the OLS solution for \boldsymbol{b}_{2}, with $\tilde{\boldsymbol{X}}_{2}$ instead of \boldsymbol{X} and $\tilde{\boldsymbol{y}}$ instead of \boldsymbol{y}.

- $\tilde{\boldsymbol{X}}_{2}$ are residuals from a regression of \boldsymbol{X}_{2} on \boldsymbol{X}_{1}
- $\tilde{\boldsymbol{y}}$ are residuals from a regression of \boldsymbol{y} on \boldsymbol{X}_{1}

The solution of the regression coefficients \boldsymbol{b}_{2} in a regression that includes other regressors \boldsymbol{X}_{1} is the same as first regressing all of \boldsymbol{X}_{2} and \boldsymbol{y} on \boldsymbol{X}_{1}, then regressing the residuals from the \boldsymbol{y} regression on the residuals from the \boldsymbol{X}_{2} regression.

References I

Angrist, J. D., and J.-S. Pischke (2009): Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press, Chapter 3.
Filoso, V. (2013): "Regression Anatomy, Revealed," The Stata Journal, 13(1), 92-106.
Frisch, R., and F. V. Waugh (1933): "Partial Time Regressions as Compared with Individual Trends," Econometrica, 1(4), 387-401.
Lovell, M. C. (2008): "A Simple Proof of the FWL Theorem," The Journal of Economic Education, 39(1), 88-91.

