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Political Connections and Firms

Firm profits increase with the degree of political connections

I Learn how to represent relationships between two or more variables

I How to quantify and predict effects of shocks and policy changes

I Show properties of the OLS estimator in small & large samples

I Apply Monte Carlo Simulations to assess properties of OLS
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Specification of a Linear Regression

I dependent variable
yi = profits of firm i

I explanatory variables
xi1; : : : ; xiK k = 1; : : :K
political connections, other
firm characteristics

I xi0 = 1 is a constant

I parameters to be estimated
�0; �1; : : : ; �K are K + 1

I ui is called the error term

yi = (�0 = 4) + (�1 = 0)xi1 + ui :
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Specification of a Linear Regression

I dependent variable
yi = profits of firm i

I explanatory variables
xi1; : : : ; xiK k = 1; : : :K
political connections, other
firm characteristics

I xi0 = 1 is a constant

I parameters to be estimated
�0; �1; : : : ; �K are K + 1

I ui is called the error term

yi = (�0 = 2:36) + (�1 = 0:01)xi1 + ui :
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How Were the Data Generated?

The data generating process is fully described by a set of assumptions.

The Five Assumptions of the Econometric Model

I LRM1: Linearity

I LRM2: Simple random sampling

I LRM3: Exogeneity

I LRM4: Error variance

I LRM5: Identifiability
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Data Generating Process: Linearity

Definition

LRM1: Linearity.

yi = �0 + �1xi1 + : : : + �KxiK + ui and E (ui ) = 0:

LRM1 assumes that the

I functional relationship is linear in parameters �k
I error term ui enters additively

I parameters �k are constant across individual firms i and j 6= i .
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Anscombe’s Quartet

Figure 1: All four sets are identical when examined using linear statistics, but very
different when graphed. Correlation between x and y is 0.816. Linear Regression y =
3.00 + 0.50x.
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Data Generating Process: Random Sampling

Definition

LRM2: Simple Random Sampling.

fxi1; : : : ; xiK ; yigNi=1 i.i.d. (independent and identically distributed)

LRM2 means that

I observation i has no information content for observation j 6= i

I all observations i come from the same distribution

This assumption is guaranteed by simple random sampling provided
there is no systematic non-response or truncation.
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Density of Population and Truncated Sample

Figure 2: Distribution of a dependent variable and an independent variable truncated
at y� = 15.
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Data Generating Process: Exogeneity

Definition
LRM3: Exogeneity.

a)
ui jxi1; : : : ; xiK � N(0; �2

i )

LRM3a assumes that the error term is normally distributed conditional on the
explanatory variables.

b)
ui ? xik 8k (independent); pdfu;x (uixik ) = pdfu(ui )pdfx (xik )

LRM3b means that the error term is independent of the explanatory variables.

c)
E(ui jxi1; : : : ; xiK ) = E(ui ) = 0 (mean independent)

LRM3c states that the mean of the error term is independent of explanatory variables.

d)
cov(xik ; ui ) = 0 8k (uncorrelated)

LRM3d means that the error term and the explanatory variables are uncorrelated.

LRM3a or LRM3b imply LRM3c and LRM3d. LRM3c implies LRM3d.
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(Conditional) Mean Independence

Figure 3: Distributions of the dependent variable conditional on values of an
independent variable.

Weaker exogeneity assumption if interest only in, say, xi1:
Conditional Mean Independence
E (ui jxi1; xi2; : : : ; xiK ) = E (ui jxi2; : : : ; xiK )
Given the control variables xi2; : : : ; xiK , the mean of ui does not depend
on the variable of interest xi1.
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Data Generating Process: Error Variance

Definition

LRM4: Error Variance.

a)
V (ui jxi1; : : : ; xiK ) = �2 <1 (homoskedasticity)

LRM4a means that the variance of the error term is a constant.

b)

V (ui jxi1; : : : ; xiK ) = �2
i = g(xi1; : : : ; xiK ) <1 (cond. heteroskedasticity)

LRM4b allows the variance of the error term to depend on a function g of
the explanatory variables.
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Heteroskedasticity

Figure 4: The simple regression model under homo- and heteroskedasticity.
Var(profitsjlobbying ; employees) increasing with lobbying .
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Data Generating Process: Identifiability

Definition

LRM5: Identifiability.

(xi0; xi1; : : : ; xiK ) are not linearly dependent

0 < V (xik) <1 8k > 0

LRM5 assumes that

I the regressors are not perfectly collinear, i.e. no variable is a linear
combination of the others

I all regressors (but the constant) have strictly positive variance both
in expectations and in the sample and not too many extreme values.

LRM5 means that every explanatory variable adds additional information.
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The Identifying Variation from xik

Figure 5: The number of red and blue dots is the same. Using which would you
get a more accurate regression line?
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Estimation with OLS

Ordinary least squares (OLS) minimizes the squared distances (SD)
between the observed and the predicted dependent variable y :

min
�0;:::;�K

SD(�0; : : : ; �K );

where SD =
NX
i=1

[yi � (�0 + �1xi1 + : : : + �KxiK )]2:
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How to Describe the Relationship Best?
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Invention of OLS

Legendre to Jacobi (Paris, 30
November 1827, Plackett, 1972):
“...How can Mr. Gauss have dared
to tell you that the greater part of
your theorems were known to
him...?

... this is the same man ... who
wanted to appropriate in 1809 the
method of least squares published
in 1805.

— Other examples will be found in
other places, but a man of honour
should refrain from imitating
them.”

Figure 6: Watercolor caricature of Legendre by
Boilly (1820), the only existing portrait known.
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Invention of OLS

Legendre to Jacobi (Paris, 30
November 1827, Plackett, 1972):
“...How can Mr. Gauss have dared
to tell you that the greater part of
your theorems were known to
him...?

... this is the same man ... who
wanted to appropriate in 1809 the
method of least squares published
in 1805.

— Other examples will be found in
other places, but a man of honour
should refrain from imitating
them.”

Figure 7: Portrait of Gauss by Jensen (1840).
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Estimation with OLS

For the bivariate regression model, the OLS estimators of �0 and �1 are

�̂0 = ȳ � �̂1x̄

�̂1 =

PN
i=1 (xi1 � x̄)(yi � ȳ)PN

i=1 (xi1 � x̄)2
=

cov(x ; y)

var(x)

�̂1 = cov(x ; y)=(sxsx) = Rsy=sx ;

where R � cov(x ; y)=(sxsy ) is Pearson’s correlation coefficient with
sz denoting the standard deviation of z .
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OLS estimator Measures Linear Correlation

Equivalently,

R = sx=sy �̂1 =
�̂1
PN

i=1 (xi1 � x̄)PN
i=1 (yi � ȳ)

=

PN
i=1 (�̂1xi1 � �̂1x̄)PN

i=1 (yi � ȳ)
:

Squaring gives

R2 =

PN
i=1 (ŷi � ȳ)2PN
i=1 (yi � ȳ)2

= 1�
PN

i=1 û2
iPN

i=1 (yi � ȳ)2
:

R2 as measure of the goodness of fit:
The fit improves with the fraction of the sample variation in y that is
explained by the x .
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The Case with K Explanatory Variables

The more general case with K
explanatory variables is

�̂
(K+1)�1

= (X 0X )�1

(K+1)�(K+1)

X 0

(K+1)�N
y

N�1

Figure 8: Scatter cloud visualized with
GRAPH3D for Stata.

Given the OLS estimator, we can predict the
I dependent variable by ŷi = �̂0 + �̂1xi1 + : : : + �̂KxiK
I the error term by ûi = yi � ŷi .

ûi is called the residual.

Adjusted R2 = 1� N�1
N�K�1

PN

i=1
û2
iPN

i=1
(yi�ȳ)2

:
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The Case with K Explanatory Variables

The more general case with K
explanatory variables is

�̂
(K+1)�1

= (X 0X )�1

(K+1)�(K+1)

X 0

(K+1)�N
y

N�1

Figure 9: OLS surface visualized with
GRAPH3D for Stata.

Given the OLS estimator, we can predict the
I dependent variable by ŷi = �̂0 + �̂1xi1 + : : : + �̂KxiK
I the error term by ûi = yi � ŷi .

ûi is called the residual.

Adjusted R2 = 1� N�1
N�K�1

PN

i=1
û2
iPN

i=1
(yi�ȳ)2

:
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Properties of the OLS Estimator

I Small sample properties of �̂
I unbiased
I normally distributed
I efficient

I Large sample properties of �̂
I consistent
I approx. normal
I asymptotically efficient
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Small Sample Properties

Figure 10: What is a small sample?
Source: Familien-Duell
Grundy Light Entertainment.
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Small Sample Properties

Figure 11: What is a small sample? (Wooldridge, 2009, p. 755): “But large
sample approximations have been known to work well for sample sizes as small
as N = 20.” Source: Familien-Duell Grundy Light Entertainment.
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Unbiasedness and Normality of �̂k

Assuming LRM1, LRM2, LRM3a, LRM4, and LRM5,
the following properties can be established even for small samples.

I The OLS estimator of � is unbiased.

E (�̂k jx11; : : : ; xNK ) = �k :

I The OLS estimator is (multivariate) normally distributed.

�̂k jx11; : : : ; xNK � N(�k ;V (�̂k)):

I Under homoskedasticity (LRM4a)
the variance bV (�̂k jx11; : : : ; xNK ) can be unbiasedly estimated.
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Variance of �̂k and Efficiency

I For the bivariate regression model, it is estimated as

bV =
�̂2PN

i=1 (xi � x̄)2
with

�̂2 =

PN
i=1 û2

i

N � K � 1
:

I Gauß-Markov-Theorem: under homoskedasticity (LRM4a)
�̂k is the BLUE (best linear unbiased estimator, e.g., non-linear
least squares biased).

I bV (�̂k) inflates with
I micronumerosity (small sample size)
I multicollinearity (high (but not perfect) correlation between two or

more of the independent variables).
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Unbiasedness

I The OLS estimator of � is unbiased.
Plug y = X� + u into the formula for �̂ and then use the law of
iterated expectation to first take expectation with respect to u
conditional on X and then take the unconditional expectation:

E[ �̂] = EX ;u

h
(X 0X )�1X 0(X� + u)

i

= � + EX ;u

h
(X 0X )�1X 0u

i

= � + EX

h
EujX

h
(X 0X )�1X 0ujX

ii

= � + EX

h
(X 0X )�1X 0EujX [ujX ]

i

= �;

where E [ujX ] = 0 by assumptions of the model.

38



Variance

I The OLS estimator � has variancebV (�̂k jx11; : : : ; xNK ) = �2(X 0X )�1

Let �2I denote the covariance matrix of u. Then,

E [ (�̂ � �)(�̂ � �)0] = E
h
((X 0X )�1X 0u)((X 0X )�1X 0u)0

i

= E
h
(X 0X )�1X 0uu0X (X 0X )�1

i

= E
h
(X 0X )�1X 0�2X (X 0X )�1

i

= E
h
�2(X 0X )�1X 0X (X 0X )�1

i

= �2(X 0X )�1;

where we used the fact that �̂ � � is just an affine transformation
of u by the matrix (X 0X )�1X 0.
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Estimator for Variance
For a simple linear regression model, where � = [�0; �1]0 (�0 is the y-intercept and �1 is the
slope), one obtains

�2(X 0X )�1 = �2
�X

xix
0

i

�
�1

= �2
�X

(1; xi )
0(1; xi )

�
�1

= �2
�X�

1xi
xix

2
i

���1

= �2

�
N
P

xiP
xi
P

x2
i

�
�1

= �2 � 1

N
P

x2
i � (

P
xi )2

�P
x2
i �

P
xi

�
P

xiN

�

= �2 � 1

N
PN

i=1
(xi � x̄)2

�P
x2
i �

P
xi

�
P

xiN

�

Var(�1) =
�2PN

i=1
(xi � x̄)2

:
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Parameter Values for Simulations

Monte Carlo Simulations show the distribution of the estimate.
Suppose the data generating process is

yi = �0 + �1xi1 + ui :

I �0 = 2:00

I �1 = 0:5

I ui � N(0:00; 1:00)

I N = 3;N = 5;N = 10;
N = 25;N = 100;N = 1000

Try it yourself...
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How to Establish Asymptotic Properties of �̂k?

Law of Large Numbers
As N increases, the distribution of
�̂k becomes more tightly centered
around �k .

(a) N=3 (b) N=5

(c) N=10 (d) N=100
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How to Establish Asymptotic Properties of �̂k?

Central Limit Theorem
As N increases, the distribution of
�̂k becomes normal (starting from
a t-distribution).

(a) N=3 (b) N=5

(c) N=10 (d) N=100
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Consistency, Asymptotically Normality

Assuming LRM1, LRM2, LRM3d, LRM4a or LRM4b, and LRM5
the following properties can be established using law of large numbers
and central limit theorem for large samples.
I The OLS estimator is consistent:

plim�̂k = �k :

That is, for all " > 0

lim
N!1

Pr
�j�̂k � �k j > "

�
= 0:

I The OLS estimator is asymptotically normally distributed
p

N(�̂k � �k)
d! N(0;Avar(�̂k)� N)

(Avar means asymptotic variance)
I The OLS estimator is approximately normally distributed

�̂k
A� N

�
�k ;Avar(�̂k)

�
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Efficiency and Asymptotic Variance

For the bivariate regression under LRM4a (homoskedasticity) it can be
consistently estimated as

Âvar(�̂1) =
�̂2PN

i=1 (xi1 � x̄)2
;

with

�̂2 =

PN
i=1 û2

i

N � 2
:

Under LRMb (heteroskedasticity), Avar(�̂) can be consistently
estimated as the robust or Eicker-Huber-White estimator.

The robust variance estimator is calculated as

Âvar(�̂1) =

PN
i=1 û2

i (xi1 � x̄)2hPN
i=1 (xi1 � x̄)2

i :
Note: In practice we can almost never be sure that the errors are
homoskedastic and should therefore always use robust standard errors.
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Sketch of Proof for Asymptotic Properties

I The OLS estimator of �̂ is consistent and asymptotic normal
Estimator �̂ can be written as: �̂ =

� 1
N X 0X

��1 1
N X 0y =

� +
� 1
N X 0X

��1 1
N X 0u = � +

�
1
N

PN
i=1 xix

0
i

��1�
1
N

PN
i=1 xiui

�
We can use the law of large numbers to establish that :
1
N

PN
i=1 xix

0
i

p�! E[xix
0
i ] = Qxx

N ; 1
N

PN
i=1 xiui

p�! E[xiui ] = 0

By Slutsky’s theorem and continuous mapping theorem these
results can be combined to establish consistency of estimator �̂:
�̂

p�! � + Q�1
xx � 0 = �

The central limit theorem tells us that: 1p
N

PN
i=1 xiui

d�! N �
0; V

�
;

where V = Var[xiui ] = E[ u2
i xix

0
i ] = E

�
E[u2

i jxi ] xix
0
i

�
= �2 Qxx

N

Applying Slutsky’s theorem again we’ll have:
p

N(�̂ � �) =

�
1
N

PN
i=1 xix

0
i

��1�
1p
N

PN
i=1 xiui

�
d�!

Q�1
xx N � N �

0; �2 Qxx
N

�
= N �

0; �2Q�1
xx N

�
46



OLS Properties in the Small and in the Large

Set of assumptions (1) (2) (3) (4) (5) (6)

LRM1: linearity f u l f i l l e d
LRM2: simple random sampling f u l f i l l e d
LRM5: identifiability f u l f i l l e d
LRM4: error variance
- LRM4a: homoskedastic X X X � � �
- LRM4b: heteroskedastic � � � X X X
LRM3: exogeneity
- LRM3a: normality X � � X � �
- LRM3b: independent X X � � � �
- LRM3c: mean indep. X X X X X �
- LRM3d: uncorrelated X X X X X X

Small sample properties of �̂
- unbiased X X X X X �
- normally distributed X � � X � �
- efficient X X X � � �
Large sample properties of �̂
- consistent X X X X X X
- approx. normal X X X X X X
- asymptotically efficient X X X � � �

I Notes: X = fulfilled, � = violated
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Tests in Small Samples I

Assume LRM1, LRM2, LRM3a, LRM4a, and LRM5. A simple null
hypotheses of the form H0 : �k = q is tested with the t-test.
If the null hypotheses is true, the t-statistic

t =
�̂k � q

bse(�̂k)
� tN�K�1

follows a t-distribution with N � K � 1 degrees of freedom. The

standard error is bse(�̂k) =
q

V̂ (�̂k).

For example, to perform a two-sided test of H0 against the alternative
hypotheses HA : �k 6= q on the 5% significance level, we calculate the
t-statistic and compare its absolute value to the 0.975-quantile of the
t-distribution. With N = 30 and K = 2, H0 is rejected if jtj > 2:052.
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Tests in Small Samples II

A null hypotheses of the form H0 : rj1�1 + : : : + rjK�K = qj , in matrix
notation H0 : R� = q, with J linear restrictions j = 1 : : : J is jointly
tested with the F -test.
If the null hypotheses is true, the F -statistic follows an F distribution
with J numerator degrees of freedom and N � K � 1 denominator
degrees of freedom:

F =

�
R�̂ � q

�0 h
RV̂ (�̂jX )R 0

i�1 �
R�̂ � q

�
J

� FJ;N�K�1:

For example, to perform a two-sided test of H0 against the alternative
hypotheses HA : rj1�1 + : : : + rjK�K 6= qj for all j at the 5% significance
level, we calculate the F -statistic and compare it to the 0.95-quantile of
the F -distribution.

With N = 30;K = 2 and J = 2, H0 is rejected if F > 3:35. We cannot
perform two-sided F -tests because the F distribution has one tail.
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Tests in Small Samples III

Only under homoskedasticity (LRM4a), the F -statistic can also be
computed as

F =
(R2 � R2

restricted)=J

(1� R2)=(N � K � 1)
� FJ;N�K�1;

where R2
restricted is estimated by restricted least squares which minimizes

SD(�) s.t. rj1�1 + : : : + rjK�K 6= qj for all j .

Exclusionary restrictions of the form H0 : �k = 0; �m = 0; : : : are a
special case of H0 : rj1�1 + : : : + rjK�K = qj for all j . In this case,
restricted least squares is simply estimated as a regression were the
explanatory variables k ;m; : : : are excluded, e.g. a regression with a
constant only.

If the F distribution has degrees of freedom (df) 1 as the numerator df,
and N � K � 1 as the denominator df, then it can be shown that
t2 = F (1;N � K � 1).
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Confidence Intervals in Small Samples

Assuming LRM1, LRM2, LRM3a, LRM4a, and LRM5,we can construct
confidence intervals for a particular coefficient �k .The (1� �)
confidence interval is given by

�
�̂k � t(1��=2);(N�K�1) bse(�̂k); �̂k + t(1��=2);(N�K�1) bse(�̂k)

�
;

where t(1��=2);(N�K�1) is the (1� �=2) quantile of the t-distribution
with (N � K � 1) degrees of freedom. For example, the 95% confidence
interval with N = 30 and K = 2 is�
�̂k � 2:052 bse(�̂k); �̂k + 2:052 bse(�̂k)

�
.
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Confidence Intervals in Small Samples

Recall: � is the maximum acceptable probability of a Type I error.

Null hypothesis (H0) is valid (Innocent) is invalid (Guilty)

Reject H0 Type I (� = 0:05) error Correct outcome

I think he is guilty! False positive True positive
Convicted! Convicted!

Don’t reject H0 Correct outcome Type II (�) error

I think he is innocent! True negative False negative
Freed! Freed!
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Asymptotic Tests

Assume LRM1, LRM2, LRM3d, LRM4a or LRM4b, and LRM5. A simple
null hypotheses of the form H0 : �k = q is tested with the z-test. If the
null hypotheses is true, the z-statistic

z =
�̂k � q

bse(�̂k)

A� N(0; 1)

follows approximately the standard normal distribution. The standard

error is bse(�̂k) =
q

Âvar(�̂k).

For example, to perform a two sided test of H0 against the alternative
hypotheses HA : �k 6= q on the 5% significance level, we calculate the
z-statistic and compare its absolute value to the 0.975-quantile of the
standard normal distribution. H0 is rejected if jz j > 1:96.

We talk about the Wald test later...
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Confidence Intervals in Large Samples

Assuming LRM1, LRM2, LRM3d, LRM5, and LRM4a or LRM4b, we can
construct confidence intervals for a particular coefficient �k . The
(1� �) confidence interval is given by

�
�̂k � z(1��=2) bse(�̂k); �̂k + z(1��=2) bse(�̂k)

�
where z(1��=2) is the (1� �=2) quantile of the standard normal
distribution.

For example, the 95% confidence interval is�
�̂k � 1:96 bse(�̂k); �̂k + 1:96 bse(�̂k)

�
.
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OLS Properties in the Small and in the Large

Set of assumptions (1) (2) (3) (4) (5) (6)

LRM1: linearity f u l f i l l e d
LRM2: simple random sampling f u l f i l l e d
LRM5: identifiability f u l f i l l e d
LRM4: error variance
- LRM4a: homoskedastic X X X � � �

- LRM4b: heteroskedastic � � � X X X
LRM3: exogeneity
- LRM3a: normality X � � X � �

- LRM3b: independent X X � � � �

- LRM3c: mean indep. X X X X X �

- LRM3d: uncorrelated X X X X X X

Small sample properties of �̂
- unbiased X X X X X �

- normally distributed X � � X � �

- efficient X X X � � �

t-test, F -test X � � � � �

Large sample properties of �̂
- consistent X X X X X X
- approx. normal X X X X X X
- asymptotically efficient X X X � � �

z-test, Wald test X X X X* X* X*

I Notes: X = fulfilled, � = violated, * = corrected standard errors.
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Arguments For Causality of Effect

Econometric methods need to address concerns, including:

I Misspecification: Results robust to different functional forms

I Errors-in-variables: little concern with administrative data

I External validity: Similar effect found in independent studies.
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Arguments Against Causality of Effect

I Omitted variable bias:
e.g., business acumen
! Panel data models

I Sample selection bias:
lobbying expenditures only observed if in transparency register.
! Selection correction models

I Simultaneous causality:
I profits may be higher because of political connections
I firms may become connected because of their high profits

All of those concerns may be addressed with
!instrumental variable models. What would be a good
instrument/experiment?
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