Econometricks: Short guides to econometrics

Trick 03: Review of Distribution Theory

Davud Rostam-Afschar (Uni Mannheim)

Content

- 1. Joint and marginal bivariate distributions
- 2. The joint density function
- 3. The joint cumulative density function
- 4. The marginal probability density
- 5. Covariance and correlation
- 6. The conditional density function
- 7. Conditional mean aka regression
- 8. The bivariate normal
- 9. Useful rules

For observations of two discrete variables $y \in \{1,2\}$ and $x \in \{1,2,3\}$, we can calculate

,

►

freq. $n_{x,y}$	y = 1	<i>y</i> = 2	$f(x) = n_x/N$
x = 1	1	2	3/10
x = 2	1	2	3/10
x = 3	0	4	4/10
$f(y) = n_y / N$	2/10	8/10	1

For observations of two discrete variables $y \in \{1, 2\}$ and $x \in \{1, 2, 3\}$, we can calculate

• the frequencies $n_{x,y}$,

• conditional distributions f(y|x) and f(x|y),

r = 1	<i>y</i> = 2	$f(x) = n_x/N$	cond. distr. $f(y x)$	y = 1	<i>y</i> = 2	\sum_{y}
1	2	3/10	f(y x=1)	1/3	2/3	1
1	2	3/10	f(y x=2)	1/3	2/3	1
0	4	4/10	f(y x=3)	0	1	1
2/10	8/10	1	f(y x = 1, x = 2, x = 3)	1/5	4/5	1
= 1)	f(x y=2)	f(x y=1, y=2)				
1/2	1/4	3/10				
1/2	1/4	3/10				
0	1/2	4/10				
1	1	1				
		$\begin{array}{c} y = 1 \\ y = 2 \\ \hline 1 \\ 2 \\ 0 \\ 4 \\ 2/10 \\ 8/10 \\ \hline \\ = 1) \\ f(x y = 2) \\ \hline 1/2 \\ 1/2 \\ 1/4 \\ 0 \\ 1/2 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{array}{c ccccc} y = 1 & y = 2 & f(x) = n_x/N \\ \hline 1 & 2 & 3/10 \\ 1 & 2 & 3/10 \\ 0 & 4 & 4/10 \\ 2/10 & 8/10 & 1 \\ \hline \\ \hline \\ \hline \\ = 1) & f(x y=2) & f(x y=1,y=2) \\ \hline 1/2 & 1/4 & 3/10 \\ 1/2 & 1/4 & 3/10 \\ 0 & 1/2 & 4/10 \\ 1 & 1 & 1 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

For observations of two discrete variables $y \in \{1, 2\}$ and $x \in \{1, 2, 3\}$, we can calculate

► the frequencies n_{x,y},

►

- conditional distributions f(y|x) and f(x|y),
- joint distributions f(x, y), and

freq. $n_{X,Y}$	y = 1	<i>y</i> = 2	$f(x) = n_x/N$	cond. distr. $f(y x)$	y = 1	<i>y</i> = 2	\sum_{y}
x = 1	1	2	3/10	f(y x=1)	1/3	2/3	1
x = 2	1	2	3/10	f(y x=2)	1/3	2/3	1
x = 3	0	4	4/10	f(y x=3)	0	1	1
$f(y) = n_y$	/N 2/10	8/10	1	f(y x = 1, x = 2, x)	= 3) 1/5	4/5	1
cond. dist $f(x y)$	f(x y=1)	f(x y=2)	f(x y=1, y=2)	joint distr. f(x, y)	f(x, y = 1)	f(x, y = 2)	
x = 1	1/2	1/4	3/10	f(x=1,y)	1/10	2/10	
x = 2	1/2	1/4	3/10	f(x=2,y)	1/10	2/10	
x = 3	0	1/2	4/10	f(x=3,y)	0	4/10	
\sum_{x}	1	1	1				

For observations of two discrete variables $y \in \{1, 2\}$ and $x \in \{1, 2, 3\}$, we can calculate

- ► the frequencies n_{x,y},
- conditional distributions f(y|x) and f(x|y),
- ▶ joint distributions f(x, y), and
- marginal distributions $f_y(y)$ and $f_x(x)$.

freq. $n_{X,y}$	y = 1	<i>y</i> = 2	$f(x) = n_x/N$	cond. distr. $f(y x)$	y = 1	<i>y</i> = 2	\sum_{y}
x = 1	1	2	3/10	f(y x=1)	1/3	2/3	1
x = 2	1	2	3/10	f(y x=2)	1/3	2/3	1
x = 3	0	4	4/10	f(y x=3)	0	1	1
$f(y) = n_y$	/N 2/10	8/10	1	f(y x = 1, x = 2, x)	= 3) 1/5	4/5	1
cond. dist $f(x y)$	r. $f(x y=1)$	f(x y=2)	f(x y=1, y=2)	joint distr. f(x, y)	f(x, y = 1)	f(x, y = 2)	marginal pr. $f_X(x)$
x = 1	1/2	1/4	3/10	f(x=1, y)	1/10	2/10	3/10
x = 2	1/2	1/4	3/10	f(x=2,y)	1/10	2/10	3/10
x = 3	0	1/2	4/10	f(x=3,y)	΄ Ο	4/10	4/10
\sum_{x}	1	1	1	marginal pr. $f_y(y)$	2/10	8/10	1

The joint density function

Two random variables X and Y have joint density function

▶ if x and y are discrete

$$f(x, y) = \operatorname{Prob}(a \le x \le b, c \le y \le d) = \sum_{a \le x \le b} \sum_{c \le y \le d} f(x, y)$$

if x and y are continuous

$$f(x, y) = Prob(a \le x \le b, c \le y \le d) = \int_a^b \int_c^d f(x, y) dx dy$$

Example

With a = 1, b = 2, c = 2, d = 2 and the following f(x, y)

joint distr. $f(x, y)$	f(x, y = 1)	f(x, y = 2)
f(x = 1, y)	1/10	2/10
f(x = 2, y)	1/10	2/10
f(x = 3, y)	0	4/10

 $Prob(1 \le x \le 2, 2 \le y \le 2) = f(y = 2, x = 1) + f(y = 2, x = 2) = 2/5.$

Bivariate probabilities

For values x and y of two discrete random variable X and Y, the **probability distribution**

$$f(x, y) = Prob(X = x, Y = y).$$

The axioms of probability require

$$f(x, y) \ge 0,$$

 $\sum_{x} \sum_{y} f(x, y) = 1.$

If X and Y are continuous,

$$\int_{X}\int_{Y}f(x,y)dxdy=1.$$

The bivariate normal distribution

The bivariate normal distribution is the joint distribution of two normally distributed variables. The density is

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}e^{-1/2[(\epsilon_x^2+\epsilon_y^2-2\rho\epsilon_x\epsilon_y)/(1-\rho^2)]},$$
 (1)

where $\epsilon_x = \frac{x - \mu_x}{\sigma_x}$, and $\epsilon_y = \frac{y - \mu_y}{\sigma_y}$.

The joint cumulative density function

1

The probability of a joint event of X and Y have joint cumulative density function

▶ if x and y are discrete

$$F(x, y) = Prob(X \le x, Y \le y) = \sum_{X \le x} \sum_{Y \le y} f(x, y)$$

if x and y are continuous

$$F(x, y) = Prob(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(t, s) ds dt$$

Example

With x = 2, y = 2 and the following f(x, y)

f(x, y)	f(x, y=1)	f(x, y = 2)
f(x = 1, y)	1/10	2/10
f(x = 2, y)	1/10	2/10
f(x = 3, y)	0	4/10

$$Prob(X \le 2, y \le 2) = f(x = 1, y = 1) + f(x = 2, y = 1) + f(x = 1, y = 2) + f(x = 2, y = 2) = 3/5$$

Bivariate probabilities

For values x and y of two discrete random variable X and Y, the **cumulative probability distribution**

$$F(x, y) = Prob(X \leq x, Y \leq y).$$

The axioms of probability require

$$0 \leq F(x, y) \leq 1,$$

 $F(\infty, \infty) = 1,$
 $F(-\infty, y) = 0,$
 $F(x, -\infty) = 0.$

The marginal probabilities can be found from the joint cdf

$$f_x(x) = P(X \le x) = Prob(X \le x, Y \le \infty) = F(x, \infty).$$

The marginal probability density

To obtain the marginal distributions $f_x(x)$ and $f_y(y)$ from the joint density f(x, y), it is necessary to sum or integrate out the other variable. For example,

if x and y are discrete

$$f_{x}(x)=\sum_{y}f(x,y),$$

if x and y are continuous

$$f_x(x)=\int_y f(x,s)ds.$$

Example

f(x,y)	f(x, y=1)	f(x, y = 2)	$f_X(x)$
f(x = 1, y)	1/10	2/10	3/10
f(x = 2, y)	1/10	2/10	3/10
f(x = 3, y)	0	4/10	4/10
$f_{Y}(y)$	2/10	8/10	1

$$f_x(x = 1) = f(x = 1, y = 1) + f(x = 1, y = 2) = 3/10.$$

$$f_y(y = 2) = f(x = 1, y = 2) + f(x = 2, y = 2) + f(x = 3, y = 2) = 4/5$$

The bivariate normal distribution

Why do we care about marginal distributions?

Means, variances, and higher moments of the variables in a joint distribution are defined with respect to the marginal distributions.

Expectations

If x and y are discrete

$$E[x] = \sum_{x} xf_{x}(x) = \sum_{x} x\left[\sum_{y} f(x, y)\right] = \sum_{x} \sum_{y} xf(x, y).$$

If x and y are continuous

$$E[x] = \int_{x} xf_{x}(x) = \int_{x} \int_{y} xf(x, y) dy dx.$$

Variances

$$Var[x] = \sum_{x} (x - E[x])^2 f_x(x) = \sum_{x} \sum_{y} (x - E[x])^2 f(x, y).$$

Covariance and correlation

For any function g(x, y),

$$E[g(x,y)] = \begin{cases} \sum_{x} \sum_{y} g(x,y) f(x,y) & \text{in the discrete case,} \\ \\ \int_{x} \int_{y} g(x,y) f(x,x) dy dx & \text{in the continuous case.} \end{cases}$$
(2)

The covariance of x and y is a special case:

$$Cov[x, y] = E[(x - \mu_x)(y - \mu_y)]$$
$$= E[xy] - \mu_x \mu_y = \sigma_{xy}$$

If x and y are independent, then $f(x, y) = f_x(x)f_y(y)$ and

$$\sigma_{xy} = \sum_{x} \sum_{y} f_{x}(x) f_{y}(y) (x - \mu_{x}) (y - \mu_{y})$$

=
$$\sum_{x} (x - \mu_{x}) f_{x}(x) \sum_{y} (y - \mu_{y}) f_{y}(y) = E[x - \mu_{x}] E[y - \mu_{y}] = 0.$$

• correlation $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$

• σ_{xy} does not imply independence (except for bivariate normal).

Independence: Pdf and cdf from marginal densities

Two random variables are statistically independent if and only if their joint density is the product of the marginal densities:

 $f(x, y) = f_x(x)f_y(y) \Leftrightarrow x \text{ and } y \text{ are independent.}$

If (and only if) x and y are independent, then the marginal cdfs factors the cdf as well:

$$F(x, y) = F_x(x)F_y(y) = Prob(X \le x, Y \le y) = Prob(X \le x)Prob(Y \le y).$$

Example

f(x,y)	f(x,y=1)	f(x, y = 2)	$f_x(x)$
$f(x = 1, y) f(x = 2, y) f(x = 3, y) f_y(y)$	1/6 1/6 1/6 1/2	$ \begin{array}{r} 1/6 \\ 1/6 \\ 1/6 \\ 1/2 \end{array} $	1/3 1/3 1/3 1/3

$$f_X(x = 3) \times f_y(y = 2) = 1/3 \times 1/2 = 1/6.$$

F(x, y)	F(x, y = 1)	F(x, y = 2)
F(x = 1, y)	1/6	2/6
F(x = 2, y)	2/6	4/6
F(x = 3, y)	3/6	1

 $P(x \le 2)P(y \le 2) = [f(x = 2, y = 1) + f(x = 2, y = 2)] \times [f(x = 1, y = 2) + f(x = 2, y = 2)]$ = [1/6 + 1/6][1/6 + 1/6] = 4/36 = 2/18. 16

The conditional density function

The **conditional distribution** over y for each value of x (and vice versa) has conditional densities

$$f(y|x) = \frac{f(x,y)}{f_x(x)} \quad f(x|y) = \frac{f(x,y)}{f_y(y)}$$

The marginal distribution of x averages the probability of x given y over the distribution of all values of y $f_x(x) = E[f(x|y)f(y)]$. If x and y are independent, knowing the value of y does not provide any information about x, so $f_x(x) = f(x|y)$.

Example

 $f_X(x =$

cond. di $f(x y)$	str. $f(x y=1)$	f(x y=2)	f(x y=1, y=2)	joint distr. f(x, y)	f(x, y = 1)	f(x, y = 2)	marginal pr. $f_X(x)$
x = 1 $x = 2$	1/2 1/2	1/4 1/4	3/10 3/10	f(x = 1, y) $f(x = 2, y)$	1/10 1/10	2/10 2/10	3/10 3/10
<i>x</i> = 3	0	(1/2)	4/10	f(x=3,y)	0	4/10	4/10
\sum_{x}	1	1	1	marginal pr. fy	(y) 2/10	8/10	1

$$f(x = 3|y = 2) = \frac{f(x = 3, y = 2)}{f_y(y = 2)} = 4/10 \times 10/8 = 1/2.$$

$$2) = E_y[f(x = 2|y)f(y)] = f(x = 2|y = 1)f(y = 1) + f(x = 2|y = 2)f(y = 2)$$

 $= 1/2 \times 2/10 + 1/4 \times 8/10 = 1/10 + 2/10 = 3/10.$

Conditional mean aka regression

A random variable may always be written as

$$y = E[y|x] + (y - E[y|x])$$

= $E[y|x] + \epsilon.$

Definition

The regression of y on x is obtained from the **conditional mean**

$$E[y|x] = \begin{cases} \sum_{y} yf(y|x) & \text{if } y \text{ is discrete,} \\ \\ \int_{y} yf(y|x)dy & \text{if } y \text{ is continuous.} \end{cases}$$
(3)

Conditional mean aka regression

Predict *y* at values of *x*:

$$\sum_{y} yf(y|x=1) = 1 \times 2/3 + 2 \times 2/3 = 5/3.$$

Conditional variance

A conditional variance is the variance of the conditional distribution:

$$Var[y|x] = \begin{cases} \sum_{y} (y - E[y|x])^2 f(y|x) & \text{if } y \text{ is discrete,} \\ \\ \int_{y} (y - E[y|x])^2 f(y|x) dy, & \text{if } y \text{ is continuous.} \end{cases}$$
(4)

The computation can be simplified by using

$$Var[y|x] = E[y^{2}|x] - (E[y|x])^{2} \ge 0.$$
(5)

Decomposition of variance $Var[y] = E_x[Var[y|x]] + Var_x[E[y|x]]$

- ▶ When we condition on x, the variance of y reduces on average.
 Var[y] ≥ E_x[Var[y|x]]
- $E_x[Var[y|x]]$ is the average of variances within each x
- $Var_x[E[y|x]]$ is variance **between** y averages in each x.

Conditional expectations and variances

•
$$E[y|x=1] = 1.67$$
, $E[y|x=2] = 1.67$, and $E[y|x=3] = 2$

▶
$$V[y|x=1] = 0.22$$
, $V[y|x=2] = 0.22$, and $V[y|x=3] = 0$

Example

f(y x)	y = 1	<i>y</i> = 2	
f(y x = 1) f(y x = 2) f(y x = 3)	1/3 1/3 0	2/3 2/3 1	1 1 1
E[y x=1]=1	$/3 \times 1 + 2$	/3 × 2 =	= 5/3
E[y x=2]=1	/3 × 1 + 2	/3 × 2 =	= 5/3
E[y x = 3]	$= 0 \times 1 +$	1 × 2 =	2

f(x, y)	f(x, y=1)	f(x, y = 2)	$f_x(x)$
$f(x = 1, y) f(x = 2, y) f(x = 3, y) f_y(y)$	1/10	2/10	3/10
	1/10	2/10	3/10
	0	4/10	4/10
	2/10	8/10	1

$$V[y|x = 1] = 12 × 1/3 + 22 × 2/3 - (5/3)2 = 2/9$$
$$V[y|x = 2] = 12 × 1/3 + 22 × 2/3 - (5/3)2 = 2/9$$
$$V[y|x = 3] = 12 × 0 + 22 × 1 - 22 = 0$$

alternatively (requiring more differences)

$$V[y|x = 1] = (1 - 5/3)^2 \times 1/3 + (2 - 5/3)^2 \times 2/3 = 2/9$$

Conditional expectations and variances

Average of variances within each x, E[V[y|x]] is less or equal total variance E[y].

Example

Use the conditional mean to calculate E[y]:

$$E[y] = E_x[E[y|x]] = E[y|x=1]f(x=1) + E[y|x=2]f(x=2) + E[y|x=3]f(x=3)$$

$$= 5/3 \times 3/10 + 5/3 \times 3/10 + 2 \times 4/10 = 9/5$$

$$E[y] = \sum_{y} f_{y}(y) = 1 \times 2/10 + 2 \times 8/10 = 9/5.$$

- Variation in y, V[y|x = 1] = 0.22, V[y|x = 2] = 0.22, and V[y|x = 3] = 0 due to variation in x, is on average $E[V[y|x]] = 3/10 \times 2/9 + 3/10 \times 2/9 + 4/10 \times 0 = 2/15$.
- For each conditional mean E[y|x = 1] = 5/3, E[y|x = 2] = 5/3, and E[y|x = 3] = 2, y varies with $V[E[y|x]] = E[(E[y|x])^2] (E[y|x])^2 = 3/10 \times (5/3)^2 + 3/10 \times (5/3)^2 + 4/10 \times (2)^2 (9/5)^2 = 2/75$.
- ▶ E[V[y|x]] + V[E[y|x]] = V[y] = 2/75 + 2/15 = 4/25.With degree of freedom correction (n - 1) (as reported in software): $E[V[y|x]] + V[E[y|x]] = V[y] = 2/75/(10 - 1) \times 10 + 2/15/(10 - 1) \times 10 = 8/45.$

Recall bivariate normal distribution is the joint distribution of two normally distributed variables. The density is

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}e^{-1/2[(\epsilon_x^2 + \epsilon_y^2 - 2\rho\epsilon_x\epsilon_y)/(1-\rho^2)]},$$
 (6)

where $\epsilon_x = \frac{x - \mu_x}{\sigma_x}$, and $\epsilon_y = \frac{y - \mu_y}{\sigma_y}$.

The covariance is $\sigma_{xy} = \rho_{xy}\sigma_x\sigma_y$, where

▶ $-1 < \rho_{xy} < 1$ is the correlation between x and y

 μ_x, σ_x, μ_y, σ_y are means and standard deviations of the marginal distributions of x or y

Properties of the bivariate normal

If x and y are bivariately normally distributed (x, y) $\sim N_2[\mu_x, \mu_y, \sigma_x^2, \sigma_y^2, \rho_{xy}]$

the marginal distributions are normal

$$f_x(x) = N[\mu_x, \sigma_x^2]$$
$$f_y(y) = N[\mu_y, \sigma_y^2]$$

the conditional distributions are normal

$$egin{aligned} f(y|x) &= \mathcal{N}[lpha+eta x,\sigma_y^2(1-
ho^2)] \ lpha &= \mu_y - eta \mu_x; eta &= rac{\sigma_{xy}}{\sigma_x^2} \end{aligned}$$

f(*x*, *y*) = *f_x*(*x*)*f_x*(*x*) if *ρ_{xy}* = 0: *x* and *y* are independent if and only if they are uncorrelated

Linearity

$$E[ax + by|z] = aE[x|z] + bE[y|z].$$

Adam's Law / Law of Iterated Expectation

 $E[y] = E_x[E[y|x]]$

Adam's general Law / Law of Iterated Expectation

 $E[y|g_2(g_1(x))] = E[E[y|g_1(x)]|g_2(g_1(x))]$

Independence

If x and y are independent, then

$$E[y] = E[y|x],$$

 $E[g_1(x)g_2(y)] = E[g_1(x)]E[g_2(y)]$

.

Taking out what is known

 $E[g_1(x)g_2(y)|x] = g_1(x)E[g_2(y)|x].$

• Projection of y by E[y|x], such that orthogonal to h(x)

E[(y-E[y|x])h(x)]=0.

Keeping just what is needed (y predictable from x needed, not residual)

E[xy] = E[xE[y|x]].

Eve's Law (EVVE) / Law of Total Variance

 $Var[y] = E_x[Var[y|x]] + Var_x[E[y|x]]$

ECCE law / Law of Total Covariance

 $Cov[x, y] = E_z[Cov[y, x|z]] + Cov_z[E[x|z], E[y|z]]$

- $Cov[x, y] = Cov_x[x, E[y|x]] = \int_x (x E[x]) E[y|x] f_x(x) dx.$
- If $E[y|x] = \alpha + \beta x$, then $\alpha = E[y] \beta E[x]$ and $\beta = \frac{Cov[x,y]}{Var[x]}$
- ▶ Regression variance $Var_x[E[y|x]]$, because E[y|x] varies with x
- Residual variance E_x[Var[y|x]] = Var[y] Var_x[E[y|x]], because y varies around the conditional mean
- Decomposition of variance $Var[y] = Var_x[E[y|x]] + E_x[Var[y|x]]$
- If $E[y|x] = \alpha + \beta x$ and if Var[y|x] is a constant, then

$$Var[y|x] = Var[y] \left(1 - Corr^2[y,x]\right) = \sigma_y^2 \left(1 - \sigma_{xy}^2\right)$$

References I

GREENE, W. H. (2003): Econometric Analysis. Prentice Hall, 5 edn.
 PISHRO-NIK, H. (2014): Introduction to Probability, Statistics, and Random Processes. Kappa Research LLC.