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Bivariate distributions

For observations of two discrete variables y 2 f1; 2g and x 2 f1; 2; 3g, we can calculate

I the frequencies nx;y ,

I conditional distributions f (y jx) and f (x jy),

I joint distributions f (x ; y), and

I marginal distributions fy (y) and fx (x).

freq. nx;y y = 1 y = 2 f (x) = nx=N cond. distr. f (y jx) y = 1 y = 2
P

y

x = 1 1 2 3/10 f (y jx = 1) 1/3 2/3 1
x = 2 1 2 3/10 f (y jx = 2) 1/3 2/3 1
x = 3 0 4 4/10 f (y jx = 3) 0 1 1
f (y) = ny=N 2/10 8/10 1 f (y jx = 1; x = 2; x = 3) 1/5 4/5 1

cond. distr. joint distr. marginal pr.
f (xjy) f (xjy = 1) f (xjy = 2) f (xjy = 1; y = 2) f (y ; x) f (y = 1; x) f (y = 2; x) fx (x)
x = 1 1/2 1/4 3/10 f (y ; x = 1) 1/10 2/10 3/10
x = 2 1/2 1/4 3/10 f (y ; x = 2) 1/10 2/10 3/10
x = 3 0 1/2 4/10 f (y ; x = 3) 0 4/10 4/10P

x
1 1 1 marginal pr. fy (y) 2/10 8/10 1
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The joint density function

Two random variables X and Y have joint density function

I if x and y are discrete

f (x ; y) = Prob(a � x � b; c � y � d) =
X

a�x�b

X
c�y�d

f (x ; y)

I if x and y are continuous

f (x ; y) = Prob(a � x � b; c � y � d) =

Z b

a

Z d

c

f (x ; y)dxdy

Example

With a = 1; b = 2; c = 2; d = 2 and the following f (x ; y)

joint distr.
f (x; y) f (x; y = 1) f (x; y = 2)

f (x = 1; y) 1/10 2/10
f (x = 2; y) 1/10 2/10
f (x = 3; y) 0 4/10

Prob(1 � x � 2; 2 � y � 2) = f (y = 2; x = 1) + f (y = 2; x = 2) = 2=5:
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Bivariate probabilities

For values x and y of two discrete random variable X and Y , the
probability distribution

f (x ; y) = Prob(X = x ;Y = y):

The axioms of probability require

f (x ; y) � 0;X
x

X
y

f (x ; y) = 1:

If X and Y are continuous,Z
x

Z
y
f (x ; y)dxdy = 1:
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The bivariate normal distribution

The bivariate normal distribution is the joint distribution of two normally
distributed variables. The density is

f (x ; y) =
1

2��x�y
p

1� �2
e�1=2[(�2

x+�2
y�2��x�y )=(1��2)]; (1)

where �x = x��x

�x
; and �y = y��y

�y
:
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The joint cumulative density function

The probability of a joint event of X and Y have joint cumulative density function

I if x and y are discrete

F (x ; y) = Prob(X � x ;Y � y) =
X
X�x

X
Y�y

f (x ; y)

I if x and y are continuous

F (x ; y) = Prob(X � x ;Y � y) =

Z x

�1

Z y

�1

f (t; s)dsdt

Example

With x = 2; y = 2 and the following f (x ; y)

f (x; y) f (x; y = 1) f (x; y = 2)

f (x = 1; y) 1/10 2/10
f (x = 2; y) 1/10 2/10
f (x = 3; y) 0 4/10

Prob(X � 2; y � 2) = f (x = 1; y = 1)+

f (x = 2; y = 1)+f (x = 1; y = 2)+f (x = 2; y = 2) = 3=5:
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Bivariate probabilities

For values x and y of two discrete random variable X and Y , the
cumulative probability distribution

F (x ; y) = Prob(X � x ;Y � y):

The axioms of probability require

0 � F (x ; y) � 1;

F (1;1) = 1;

F (�1; y) = 0;

F (x ;�1) = 0:

The marginal probabilities can be found from the joint cdf

fx(x) = P(X � x) = Prob(X � x ;Y � 1) = F (x ;1):
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The marginal probability density

To obtain the marginal distributions fx(x) and fy (y) from the joint density f (x ; y), it

is necessary to sum or integrate out the other variable. For example,

I if x and y are discrete

fx(x) =
X
y

f (x ; y);

I if x and y are continuous

fx(x) =

Z
y

f (x ; s)ds:

Example

f (x; y) f (x; y = 1) f (x; y = 2) fx (x)

f (x = 1; y) 1/10 2/10 3/10

f (x = 2; y) 1/10 2/10 3/10
f (x = 3; y) 0 4/10 4/10
fy (y) 2/10 8/10 1

fx (x = 1) = f (x = 1; y = 1) + f (x = 1; y = 2) = 3=10:

fy (y = 2) = f (x = 1; y = 2) + f (x = 2; y = 2) + f (x = 3; y = 2) = 4=5:
12



The bivariate normal distribution
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Why do we care about marginal distributions?

Means, variances, and higher moments of the variables in a joint
distribution are defined with respect to the marginal distributions.

I Expectations

If x and y are discrete

E [x ] =
X
x

xfx(x) =
X
x

x

"X
y

f (x ; y)

#
=
X
x

X
y

xf (x ; y):

If x and y are continuous

E [x ] =

Z
x
xfx(x) =

Z
x

Z
y
xf (x ; y)dydx :

I Variances

Var [x ] =
X
x

(x � E [x ])2fx(x) =
X
x

X
y

(x � E [x ])2f (x ; y):
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Covariance and correlation

For any function g(x ; y),

E [g(x ; y)] =

8><
>:
P

x

P
y
g(x ; y)f (x ; y) in the discrete case;

R
x

R
y
g(x ; y)f (x ; x)dydx in the continuous case:

(2)

The covariance of x and y is a special case:

Cov [x ; y ] = E [(x � �x )(y � �y )]

= E [xy ] � �x�y = �xy

If x and y are independent, then f (x ; y) = fx (x)fy (y) and

�xy =
X
x

X
y

fx (x)fy (y)(x � �x )(y � �y )

=
X
x

(x � �x )fx (x)
X
y

(y � �y )fy (y) = E [x � �x ]E [y � �y ] = 0:

I correlation �xy =
�xy

�x�y

I �xy does not imply independence (except for bivariate normal).
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Independence: Pdf and cdf from marginal densities

I Two random variables are statistically independent if and only if their joint

density is the product of the marginal densities:

f (x ; y) = fx(x)fy (y), x and y are independent:

I If (and only if) x and y are independent, then the marginal cdfs factors the cdf

as well:

F (x ; y) = Fx(x)Fy (y) = Prob(X � x ;Y � y) = Prob(X � x)Prob(Y � y):

Example

f (x; y) f (x; y = 1) f (x; y = 2) fx (x)

f (x = 1; y) 1/6 1/6 1/3
f (x = 2; y) 1/6 1/6 1/3

f (x = 3; y) 1/6 1/6 1/3

fy (y) 1/2 1/2 1

fx (x = 3)� fy (y = 2) = 1=3� 1=2 = 1=6:

F (x; y) F (x; y = 1) F (x; y = 2)

F (x = 1; y) 1/6 2/6
F (x = 2; y) 2/6 4/6
F (x = 3; y) 3/6 1

P(x � 2)P(y � 2) = [f (x = 2; y = 1)+f (x = 2; y = 2)]�

[f (x = 1; y = 2) + f (x = 2; y = 2)]

= [1=6 + 1=6][1=6 + 1=6] = 4=36 = 2=18: 16



The conditional density function

The conditional distribution over y for each value of x (and vice versa) has conditional

densities

f (y jx) =
f (x ; y)

fx (x)
f (x jy) =

f (x ; y)

fy (y)
:

The marginal distribution of x averages the probability of x given y over the distribution of all

values of y fx (x) = E [f (x jy)f (y)]: If x and y are independent, knowing the value of y does

not provide any information about x , so fx (x) = f (x jy):

Example

cond. distr. joint distr. marginal pr.
f (xjy) f (xjy = 1) f (xjy = 2) f (xjy = 1; y = 2) f (x; y) f (x; y = 1) f (x; y = 2) fx (x)

x = 1 1/2 1/4 3/10 f (x = 1; y) 1/10 2/10 3/10
x = 2 1/2 1/4 3/10 f (x = 2; y) 1/10 2/10 3/10

x = 3 0 1/2 4/10 f (x = 3; y) 0 4/10 4/10P
x

1 1 1 marginal pr. fy (y) 2/10 8/10 1

f (x = 3jy = 2) =
f (x = 3; y = 2)

fy (y = 2)
= 4=10� 10=8 = 1=2:

fx (x = 2) = Ey [f (x = 2jy)f (y)] = f (x = 2jy = 1)f (y = 1) + f (x = 2jy = 2)f (y = 2)

= 1=2� 2=10 + 1=4� 8=10 = 1=10 + 2=10 = 3=10: 17



Conditional mean aka regression

A random variable may always be written as

y = E [y jx ] + (y � E [y jx ])

= E [y jx ] + �:

Definition

The regression of y on x is obtained from the conditional mean

E [y jx ] =

8>>>><
>>>>:

P
y yf (y jx) if y is discrete;

R
y yf (y jx)dy if y is continuous:

(3)
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Conditional mean aka regression

Predict y at values of x :X
y

yf (y jx = 1) = 1� 2=3 + 2� 2=3 = 5=3:
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Conditional variance

A conditional variance is the variance of the conditional distribution:

Var [y jx ] =

8>><
>>:
P

y (y � E [y jx ])2 f (y jx) if y is discrete;

R
y

(y � E [y jx ])2 f (y jx)dy ; if y is continuous:

(4)

The computation can be simplified by using

Var [y jx ] = E [y2jx ]� (E [y jx ])2 � 0: (5)

Decomposition of variance Var [y ] = Ex [Var [y jx ]] + Varx [E [y jx ]]

I When we condition on x , the variance of y reduces on average.

Var [y ] � Ex [Var [y jx ]]

I Ex [Var [y jx ]] is the average of variances within each x

I Varx [E [y jx ]] is variance between y averages in each x .
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Conditional expectations and variances

I E [y jx = 1] = 1:67, E [y jx = 2] = 1:67, and E [y jx = 3] = 2

I V [y jx = 1] = 0:22, V [y jx = 2] = 0:22, and V [y jx = 3] = 0

Example

f (y jx) y = 1 y = 2

f (y jx = 1) 1/3 2/3 1
f (y jx = 2) 1/3 2/3 1
f (y jx = 3) 0 1 1

E [y jx = 1] = 1=3� 1 + 2=3� 2 = 5=3

E [y jx = 2] = 1=3� 1 + 2=3� 2 = 5=3

E [y jx = 3] = 0� 1 + 1� 2 = 2

f (x; y) f (x; y = 1) f (x; y = 2) fx (x)

f (x = 1; y) 1/10 2/10 3/10
f (x = 2; y) 1/10 2/10 3/10
f (x = 3; y) 0 4/10 4/10
fy (y) 2/10 8/10 1

V [y jx = 1] = 12 � 1=3 + 22 � 2=3� (5=3)2 = 2=9

V [y jx = 2] = 12 � 1=3 + 22 � 2=3� (5=3)2 = 2=9

V [y jx = 3] = 12 � 0 + 22 � 1� 22 = 0

alternatively (requiring more differences)

V [y jx = 1] = (1� 5=3)2 � 1=3 + (2� 5=3)2 � 2=3 = 2=9
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Conditional expectations and variances

Average of variances within each x , E [V [y jx]] is less or equal total variance E [y ].

Example

I Use the conditional mean to calculate E [y ]:

E [y ] = Ex [E [y jx]] = E [y jx = 1]f (x = 1) + E [y jx = 2]f (x = 2) + E [y jx = 3]f (x = 3)

= 5=3� 3=10 + 5=3� 3=10 + 2� 4=10 = 9=5:

E [y ] =

X
y

fy (y) = 1� 2=10 + 2� 8=10 = 9=5:

I Variation in y , V [y jx = 1] = 0:22, V [y jx = 2] = 0:22, and V [y jx = 3] = 0 due to variation in x , is on average

E [V [y jx]] = 3=10� 2=9 + 3=10� 2=9 + 4=10� 0 = 2=15:

I For each conditional mean E [y jx = 1] = 5=3, E [y jx = 2] = 5=3, and E [y jx = 3] = 2, y varies with

V [E [y jx]] = E [(E [y jx])2]� (E [y jx])2 = 3=10� (5=3)2 + 3=10� (5=3)2 + 4=10� (2)2 � (9=5)2 = 2=75:

I E [V [y jx]] + V [E [y jx]] = V [y ] = 2=75 + 2=15 = 4=25:

With degree of freedom correction (n � 1) (as reported in software):

E [V [y jx]] + V [E [y jx]] = V [y ] = 2=75=(10� 1)� 10 + 2=15=(10� 1)� 10 = 8=45:
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Properties of the bivariate normal

Recall bivariate normal distribution is the joint distribution of two
normally distributed variables. The density is

f (x ; y) =
1

2��x�y
p

1� �2
e�1=2[(�2

x+�2
y�2��x�y )=(1��2)]; (6)

where �x = x��x

�x
; and �y = y��y

�y
:

The covariance is �xy = �xy�x�y ; where

I �1 < �xy < 1 is the correlation between x and y

I �x ; �x ; �y ; �y are means and standard deviations of the marginal

distributions of x or y
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Properties of the bivariate normal

If x and y are bivariately normally distributed

(x ; y) � N2[�x ; �y ; �
2
x ; �

2
y ; �xy ]

I the marginal distributions are normal

fx(x) = N[�x ; �
2
x ]

fy (y) = N[�y ; �
2
y ]

I the conditional distributions are normal

f (y jx) = N[� + �x ; �2
y (1� �2)]

� = �y � ��x ;� =
�xy

�2
x

I f (x ; y) = fx(x)fx(x) if �xy = 0: x and y are independent if and

only if they are uncorrelated
24



Useful rules

I �xy = �xy

�x�y

I E [ax + by + c] = aE [x ] + bE [y ] + c

I Var [ax+by+c] = a2Var [x ]+b2Var [y ]+2abCov [x ; y ] = Var [ax+by ]

I Cov [ax + by ; cx + dy ] = acVar [x ] + bdVar [y ] + (ad + bc)Cov [x ; y ]

I If X and Y are uncorrelated, then

Var [x + y ] = Var [x � y ] = Var [x ] + Var [y ]:
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Useful rules

I Linearity

E [ax + by jz ] = aE [x jz ] + bE [y jz ]:

I Adam’s Law / Law of Iterated Expectation

E [y ] = Ex [E [y jx ]]

I Adam’s general Law / Law of Iterated Expectation

E [y jg2(g1(x))] = E [E [y jg1(x)]jg2(g1(x))]

I Independence

If x and y are independent, then

E [y ] = E [y jx ];

E [g1(x)g2(y)] = E [g1(x)]E [g2(y)]:
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Useful rules

I Taking out what is known

E [g1(x)g2(y)jx ] = g1(x)E [g2(y)jx ]:

I Projection of y by E [y jx ], such that orthogonal to h(x)

E [(y � E [y jx ])h(x)] = 0:

I Keeping just what is needed (y predictable from x needed, not residual)

E [xy ] = E [xE [y jx ]]:

I Eve’s Law (EVVE) / Law of Total Variance

Var [y ] = Ex [Var [y jx ]] + Varx [E [y jx ]]

I ECCE law / Law of Total Covariance

Cov [x ; y ] = Ez [Cov [y ; x jz ]] + Covz [E [x jz ];E [y jz ]]
27



Useful rules

I Cov [x ; y ] = Covx [x ;E [y jx ]] =
R
x (x � E [x ])E [y jx ]fx(x)dx :

I If E [y jx ] = � + �x , then � = E [y ]� �E [x ] and � = Cov [x ;y ]
Var [x]

I Regression variance Varx [E [y jx ]], because E [y jx ] varies with x

I Residual variance Ex [Var [y jx ]] = Var [y ]� Varx [E [y jx ]], because y

varies around the conditional mean

I Decomposition of variance Var [y ] = Varx [E [y jx ]] + Ex [Var [y jx ]]

I Coefficient of determination = regression variance
total variance

I If E [y jx ] = � + �x and if Var [y jx ] is a constant, then

Var [y jx ] = Var [y ]
�

1� Corr2[y ; x ]
�

= �2
y

�
1� �2

xy

�
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