Econometricks: Short guides to econometrics

Trick 02: Specific Distributions
Davud Rostam-Afschar (Uni Mannheim)

Content

1. The normal distribution
2. Method of transformations
3. The χ^{2} distribution
4. The F-distribution
5. The student t-distribution
6. The lognormal distribution
7. The gamma distribution
8. The beta distribution
9. The logistic distribution
10. The Wishart distribution
11. Common distributions and their properties

Specific Distributions

Thanks to Ping Yu

Discrete distributions

The Bernoulli distribution for a single binomial outcome (trial) is

$$
\begin{aligned}
& \operatorname{Prob}(x=1)=p \\
& \operatorname{Prob}(x=0)=1-p
\end{aligned}
$$

where $0 \leq p \leq 1$ is the probability of success.

- $E[x]=p$ and
- $V[x]=E\left[x^{2}\right]-E[x]^{2}=p-p^{2}=p(1-p)$.

Discrete distributions

The distribution for x successes in n trials is the binomial distribution,

$$
\operatorname{Prob}(X=x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{n-x} \quad x=0,1, \ldots, n
$$

The mean and variance of x are

- $E[x]=n p$ and
- $V[x]=n p(1-p)$.

Example of a binomial [$n=15, p=0.5$] distribution:

Discrete distributions

The limiting form of the binomial distribution, $n \rightarrow \infty$, is the Poisson distribution,

$$
\operatorname{Prob}(X=x)=\frac{e^{\lambda} \lambda^{x}}{x!}
$$

The mean and variance of x are

- $E[x]=\lambda$ and
- $V[x]=\lambda$.

Example of a Poisson [3] distribution:

The normal distribution

Random variable $x \sim N\left[\mu, \sigma^{2}\right]$ is distributed according to the normal distribution with mean μ and standard deviation σ obtained as

$$
\begin{equation*}
f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \tag{1}
\end{equation*}
$$

The density is denoted $\phi(x)$ and the cumulative distribution function is denoted $\Phi(x)$ for the standard normal. Example of a standard normal, ($x \sim N[0,1]$), and a normal with mean 0.5 and standard deviation 1.3:

Transformation of random variables

Continuous variable x may be transformed to a discrete variable y. Calculate the mean of variable x in the respective interval:

$$
\begin{aligned}
& \operatorname{Prob}\left(Y=\mu_{1}\right)=P(-\infty<X \leq a) \\
& \operatorname{Prob}\left(Y=\mu_{2}\right)=P(a<X \leq b) \\
& \operatorname{Prob}\left(Y=\mu_{3}\right)=P(b<X \leq \infty)
\end{aligned}
$$

Method of transformations

If x is a continuous random variable with pdf $f_{x}(x)$ and if $y=g(x)$ is a continuous monotonic function of x, then the density of y is obtained by

$$
\operatorname{Prob}(y \leq b)=\int_{-\infty}^{b} f_{x}\left(g^{-1}(y)\right)\left|g^{-1 \prime}(y)\right| d y .
$$

With $\left.f_{y}(y)=f_{x}\left(g^{-1}(y)\right) \mid g^{-1 \prime}\right](y) \mid d y$, this equation can be written as

$$
\operatorname{Prob}(y \leq b)=\int_{-\infty}^{b} f_{y}(y) d y
$$

Example

If $x \sim N\left[\mu, \sigma^{2}\right]$, then the distribution of $y=g(x)=\frac{x-\mu}{\sigma}$ is found as follows:

$$
\begin{gathered}
g^{-1}(y)=x=\sigma y+\mu \\
g^{-1 \prime}(y)=\frac{d x}{d y}=\sigma
\end{gathered}
$$

Therefore with $f_{x}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left[\left(g^{-1}(y)-\mu\right)^{2} / \sigma^{2}\right]}\left|g^{-1 \prime}(y)\right|$

$$
f_{y}(y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-[(\sigma y+\mu)-\mu]^{2} / 2 \sigma^{2}}|\sigma|=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}
$$

Properties of the normal distribution

- Preservation under linear transformation:

If $x \sim N\left[\mu, \sigma^{2}\right]$, then $(a+b x) \sim N\left[a+b \mu, b^{2} \sigma^{2}\right]$.

- Convenient transformation $a=-\mu / \sigma$ and $b=1 / \sigma$:

The resulting variable $z=\frac{(x-\mu)}{\sigma}$ has the standard normal distribution with density

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}
$$

- If $x \sim N\left[\mu, \sigma^{2}\right]$, then $f(x)=\frac{1}{\sigma} \phi\left[\frac{x-\mu}{\sigma}\right]$
- $\operatorname{Prob}(a \leq x \leq b)=\operatorname{Prob}\left(\frac{a-\mu}{\sigma} \leq \frac{x-\mu}{\sigma} \leq \frac{b-\mu}{\sigma}\right)$
- $\phi(-z)=1-\phi(z)$ and $\Phi(-x)=1-\Phi(x)$ because of symmetry

Method of transformations

If $z \sim N[0,1]$, then $z^{2} \sim \chi^{2}[1]$ with pdf $\frac{1}{\sqrt{2 \pi y}} e^{-y / 2}$.

Example

$$
\begin{gathered}
f_{x}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \\
y=g(x)=x^{2} \\
g^{-1}(y)=x= \pm \sqrt{y} \text { there are two solutions to } g_{1}, g_{2} \\
g^{-1 \prime}(y)=\frac{d x}{d y}= \pm 1 / 2 y^{-1 / 2} \\
f_{y}(y)=f_{x}\left(g_{1}^{-1}(y)\right)\left|g_{1}^{-1 \prime}(y)\right|+f_{x}\left(g_{2}^{-1}(y)\right)\left|g_{2}^{-1 \prime}(y)\right| \\
f_{y}(y)=f_{x}(\sqrt{y})\left|1 / 2 y^{-1 / 2}\right|+f_{x}(-\sqrt{y})\left|-1 / 2 y^{-1 / 2}\right| \\
f_{y}(y)=\frac{1}{2 \sqrt{2 \pi y}} e^{-\frac{y}{2}}+\frac{1}{2 \sqrt{2 \pi y}} e^{-\frac{y}{2}}=\frac{1}{\sqrt{2 \pi y}} e^{-\frac{y}{2}}
\end{gathered}
$$

Distributions derived from the normal

- If $z \sim N[0,1]$, then $z^{2} \sim \chi^{2}[1]$ with $E\left[z^{2}\right]=1$ and $V\left[z^{2}\right]=2$.
- If x_{1}, \ldots, x_{n} are n independent $\chi^{2}[1]$ variables, then

$$
\sum_{i=1}^{n} x_{i} \sim \chi^{2}[n]
$$

- If $z_{i}, i=1, \ldots, n$, are independent $N[0,1]$ variables, then

$$
\sum_{i=1}^{n} z_{i}^{2} \sim \chi^{2}[n]
$$

- If $z_{i}, i=1, \ldots, n$, are independent $N\left[0, \sigma^{2}\right]$ variables, then

$$
\sum_{i=1}^{n}\left(\frac{z_{i}}{\sigma}\right)^{2} \sim \chi^{2}[n]
$$

- If x_{1} and x_{2} are independent χ^{2} variables with n_{1} and n_{2} degrees of freedom, then

$$
x_{1}+x_{2} \sim \chi^{2}\left[n_{1}+n_{2}\right] .
$$

The χ^{2} distribution

Random variable $x \sim \chi^{2}[n]$ is distributed according to the chi-squared distribution with n degrees of freedom

$$
\begin{equation*}
f(x \mid n)=\frac{x^{n / 2-1} e^{-x / 2}}{2^{n / 2} \Gamma\left(\frac{n}{2}\right)}, \tag{2}
\end{equation*}
$$

where Γ is the Gamma-distribution (more below).

- $E[x]=n$
- $V[x]=2 n$

Example of a χ^{2} [3] distribution:

The F-distribution

If x_{1} and x_{2} are two independent chi-squared variables with degrees of freedom parameters n_{1} and n_{2}, respectively, then the ratio

$$
\begin{equation*}
F\left[n_{1}, n_{2}\right]=\frac{x_{1} / n_{1}}{x_{2} / n_{2}} \tag{3}
\end{equation*}
$$

has the \mathbf{F} distribution with n_{1} and n_{2} degrees of freedom.

The student t-distribution

If x_{1} is an $N[0,1]$ variable, often denoted by z, and x_{2} is $\chi^{2}\left[n_{2}\right]$ and is independent of x_{1}, then the ratio

$$
\begin{equation*}
t\left[n_{2}\right]=\frac{x_{1}}{\sqrt{x_{2} / n_{2}}} \tag{4}
\end{equation*}
$$

has the \mathbf{t} distribution with n_{2} degrees of freedom.
Example for the t distributions with 3 and 10 degrees of freedom with the standard normal distribution.

Comparing (3) with $n_{1}=1$ and (4), if $t \sim t[n]$, then $t^{2} \sim F[1, n]$.

The $t[30]$ approx. the standard normal

Approximating a χ^{2}

For degrees of freedom greater than 30 the distribution of the chi-squared variable x is approx.

$$
\begin{equation*}
z=(2 x)^{1 / 2}-(2 n-1)^{1 / 2} \tag{5}
\end{equation*}
$$

which is approximately standard normally distributed. Thus,

$$
\operatorname{Prob}\left(\chi^{2}[n] \leq a\right) \approx \Phi\left[(2 a)^{1 / 2}-(2 n-1)^{1 / 2}\right]
$$

The lognormal distribution

The lognormal distribution, denoted $L N\left[\mu, \sigma^{2}\right]$, has been particularly useful in modeling the size distributions.

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma x} e^{-\frac{1}{2}[(\ln x-\mu) / \sigma]^{2}}, \quad x>0
$$

A lognormal variable x has

- $E[x]=e^{\mu+\sigma^{2} / 2}$, and
- $\operatorname{Var}[x]=e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$.

If $y \sim L N\left[\mu, \sigma^{2}\right]$, then $\ln y \sim N\left[\mu, \sigma^{2}\right]$.

The gamma distribution

The general form of the gamma distribution is

$$
\begin{equation*}
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} e^{-\beta x} x^{\alpha-1}, \quad x \geq 0, \beta=1 / \theta>0, \alpha=k>0 . \tag{6}
\end{equation*}
$$

Many familiar distributions are special cases, including the exponential distribution $(\alpha=1)$ and chi-squared $(\beta=1 / 2, \alpha=n / 2)$. The Erlang distribution results if α is a positive integer. The mean is α / β, and the variance is α / β^{2}. The inverse gamma distribution is the distribution of $1 / x$, where x has the gamma distribution.

The beta distribution

For a variable constrained between 0 and $c>0$, the beta distribution has proved useful. Its density is

$$
f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}\left(\frac{x}{c}\right)^{\alpha-1}\left(1-\frac{x}{c}\right)^{\beta-1} \frac{1}{c}, \quad 0 \leq x \leq 1 .
$$

It is symmetric if $\alpha=\beta$, asymmetric otherwise. The mean is $c a /(\alpha+\beta)$, and the variance is $c^{2} \alpha \beta /\left[(\alpha+\beta+1)(\alpha+\beta)^{2}\right]$.

The logistic distribution

The logistic distribution is an alternative if the normal cannot model the mass in the tails; the cdf for a logistic random variable with $\mu=0, s=1$ is

$$
F(x)=\Lambda(x)=\frac{1}{1+e^{-x}}
$$

The density is $f(x)=\Lambda(x)[1-\Lambda(x)]$. The mean and variance of this random variable are zero and $\sigma^{2}=\pi^{2} / 3$.

The Wishart distribution

The Wishart distribution describes the distribution of a random matrix obtained as

$$
f(\boldsymbol{W})=\sum_{i=1}^{n}\left(x_{i}-\mu\right)\left(x_{i}-\mu\right)^{\prime}
$$

where x_{i} is the i th of $n K$ element random vectors from the multivariate normal distribution with mean vector, μ, and covariance matrix, Σ. The density of the Wishart random matrix is

$$
f(\boldsymbol{W})=\frac{\exp \left[-\frac{1}{2} \operatorname{trace}\left(\Sigma^{-1} \boldsymbol{W}\right)\right]|\boldsymbol{W}|^{-\frac{1}{2}(n-K-1)}}{2^{n K / 2}|\Sigma|^{K / 2} \pi^{K(K-1) / 4} \prod_{j=1}^{K} \Gamma\left(\frac{n+1-j}{2}\right)}
$$

The mean matrix is $n \Sigma$. For the individual pairs of elements in \boldsymbol{W},

$$
\operatorname{Cov}\left[w_{i j}, w_{r s}\right]=n\left(\sigma_{i r} \sigma_{j s}+\sigma_{i s} \sigma_{j r}\right)
$$

The Wishart distribution is a multivariate extension of χ^{2} distribution. If $\boldsymbol{W} \sim \boldsymbol{W}\left(n, \sigma^{2}\right)$, then $\boldsymbol{W} / \sigma^{2} \sim \chi^{2}[n]$.

Common distributions and their properties

	Normal	Logistic
Parameters	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}>0$	$\mu \in \mathbb{R}, s \in \mathbb{R}_{>0}$
Support	$x \in \mathbb{R}$	$x \in \mathbb{R}$
PDF	$\phi\left(\frac{x-\mu}{\sigma}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$	$\lambda\left(\frac{x-\mu}{s}\right)=\frac{e^{-(x-\mu) / s}}{s\left(1+e^{-(x-\mu) / s}\right)^{2}}$
CDF	$\Phi\left(\frac{x-\mu}{\sigma}\right)=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right)\right]$	$\Lambda\left(\frac{x-\mu}{s}\right)=\frac{1}{1+e^{-(x-\mu) / s}}$
Mean	μ	μ
Median	μ	μ
Mode	μ	μ
Variance	σ^{2}	$\frac{s^{2} \pi^{2}}{3}$
Skewness	0	0
Ex. Kurtosis	0	$6 / 5$
MGF	$\exp \left(\mu t+\sigma^{2} t^{2} / 2\right)$	$e^{\mu t} B(1-s t, 1+s t)$
		for $t \in(-1 / s, 1 / s)$

- PDF denotes probability density function, CDF cumulative distribution function, MGF moment-generating function.
- μ mean (location), σ, s (scale).
- $B\left(z_{1}, z_{2}\right)$ is beta function $\int_{0}^{1} t^{z_{1}-1}(1-t)^{z_{2}-1} d t$ for complex number inputs z_{1}, z_{2} with $\Re\left(z_{1}\right), \Re\left(z_{2}\right)>0$.
- Excess Kurtosis is defined as Kurtosis minus 3.

Common distributions and their properties

	t	Log-normal
Parameters	$n \in \mathbb{R}>0$	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}>0$
Support	$x \in \mathbb{R}$	$x \in \mathbb{R}>0$
PDF	$\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n} \Gamma\left(\frac{n}{2}\right)}\left(1+\frac{x^{2}}{n}\right)^{-\frac{n+1}{2}}$	$\frac{1}{x \sigma \sqrt{2 \pi}} \exp \left(-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}\right)$
CDF	$\frac{1}{2}+x \Gamma\left(\frac{n+1}{2}\right) \times$	$\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{\ln x-\mu}{\sigma \sqrt{2}}\right)\right]$
	$\frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{n+1}{2} ; \frac{3}{2} ;-\frac{x^{2}}{n}\right)}{\sqrt{\pi n} \Gamma\left(\frac{n}{2}\right)}$	$=\Phi\left(\frac{\ln (x)-\mu}{\sigma}\right)$
Mean	0 for $n>1$	$\exp \left(\mu+\frac{\sigma^{2}}{2}\right)$
Median	0	$\exp (\mu)$
Mode	0	$\left[\exp \left(\mu-\sigma^{2}\right)\right.$
Variance	$\frac{n}{n-2}$ for $n>2$,	$\left[\exp \left(\sigma^{2}\right)-1\right] \exp \left(2 \mu+\sigma^{2}\right)$
Skewness	∞ for $1<n \leq 2$	
Ex. Kurtosis	0 for $n>3$	$\frac{6}{n-4}$ for $n>4, \infty$ for $2<n \leq 4$
MGF	does not exist	$1 \exp \left(4 \sigma^{2}\right)+2 \exp \left(3 \sigma^{2}\right)+3 \exp \left(2 \sigma^{2}\right)-6$
		not determined by its moments

- n denote degrees of freedom.
$-{ }_{2} F_{1}(\cdot, \cdot ; \cdot ; \cdot)$ is a particular instance of the hypergeometric function.

Common distributions and their properties

	Γ	Γ
Parameters	$k>0 \in \mathbb{R}$ (shape),	$\alpha>0 \in \mathbb{R}$ (shape),
Support	$\theta>0 \in \mathbb{R}$ scale	$\beta>0 \in \mathbb{R}$ (rate)
	$x \in \mathbb{R}(0, \infty)$	$x \in \mathbb{R}(0, \infty)$
PDF	$f(x)=\frac{1}{\Gamma(k) \theta^{k}} x^{k-1} e^{-x / \theta}$	$f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$
CDF	$F(x)=\frac{1}{\Gamma(k)} \gamma\left(k, \frac{x}{\theta}\right)$	$F(x)=\frac{1}{\Gamma(\alpha)} \gamma(\alpha, \beta x)$
Mean	$k \theta$	$\frac{\alpha}{\beta}$
Median	No simple closed form	No simple closed form
Mode	$(k-1) \theta$ for $k \geq 1,0$ for $k<1$	$\frac{\alpha-1}{\beta}$ for $\alpha \geq 1,0$ for $\alpha<1$
Variance	$k \theta^{2}$	$\frac{\alpha}{\beta^{2}}$
Skewness	$\frac{2}{\sqrt{\sqrt{k}}}$	$\frac{2}{\sqrt{\alpha}}$
Ex. Kurtosis	$\frac{6}{k}$	$\frac{6}{\alpha}$
MGF	$(1-\theta t)^{-k}$ for $t<\frac{1}{\theta}$	$\left(1-\frac{t}{\beta}\right)^{-\alpha}$ for $t<\beta$

- $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t, \quad \Re(z)>0$, for complex numbers with a positive real part.
- lower incomplete gamma function is $\gamma(s, x)=\int_{0}^{x} t^{s-1} e^{-t} d t$, for complex numbers with a positive real part.

Common distributions and their properties

	χ^{2}	F
Parameters	$n \in \mathbb{N}_{>0}$	$n_{1}, n_{2} \in \mathbb{N}_{>0}$
Support	$\begin{aligned} & x \in \mathbb{R}_{>0} \text { if } n=1 \\ & \text { else } x \in \mathbb{R}_{\geq 0} \end{aligned}$	$\begin{aligned} & x \in \mathbb{R}_{>0} \text { if } n_{1}=1, \\ & \text { else } x \in \mathbb{R}_{\geq 0} \end{aligned}$
PDF	$\frac{1}{2^{n / 2} \Gamma(n / 2)} x^{n / 2-1} e^{-x / 2}$	$n_{1}^{\frac{n_{1}}{2}} n_{2}^{\frac{n_{2}}{2}} \frac{\Gamma\left(\frac{\overline{n_{1}}+n_{2}}{2}\right)}{\Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)} \frac{x^{\frac{n_{1}}{2}-1}}{\left(n_{1} x+n_{2}\right)^{\frac{n_{1}+n_{2}}{2}}}$
CDF	$\frac{1}{\Gamma(n / 2)} \gamma\left(\frac{n}{2}, \frac{x}{2}\right)$	$I\left(\frac{n_{1} x}{n_{1} x+n_{2}}, \frac{n_{1}}{2}, \frac{n_{2}}{2}\right)$
Mean	n	$\frac{n_{2}}{n_{2}-2}$ for $n_{2}>2$
Median	No simple closed form	No simple closed form
Mode	$\max (n-2,0)$	$\frac{n_{1}-2}{n_{1}} \frac{n_{2}}{n_{2}+2}$ for $n_{1}>2$
Variance	$2 n$	$\frac{2 n_{2}^{2}\left(n_{1}+n_{2}-2\right)}{n_{1}\left(n_{2}-2\right)^{2}\left(n_{2}-4\right)} \text { for } n_{2}>4$
Skewness	$\sqrt{8 / n}$	$\frac{\left(2 n_{1}+n_{2}-2\right) \sqrt{8\left(n_{2}-4\right)}}{\left(n_{2}-6\right) \sqrt{n_{1}\left(n_{1}+n_{2}-2\right)}} \text { for } n_{2}>6$
Ex. Kurtosis	$\frac{12}{n}$	$12 \frac{n_{1}\left(5 n_{2}-22\right)\left(n_{1}+n_{2}-2\right)+\left(n_{2}-4\right)\left(n_{2}-2\right)^{2}}{n_{1}\left(n_{2}-6\right)\left(n_{2}-8\right)\left(n_{1}+n_{2}-2\right)}$ for $n_{2}>8$
MGF	$(1-2 t)^{-n / 2}$ for $t<\frac{1}{2}$	does not exist

- n, n_{1}, n_{2} known as degrees of freedom.
- Regularized incomplete beta function $I(x, a, b)=\frac{B(x, a, b)}{B(a, b)}$ with $B(x, a, b)=\int_{0}^{x} t^{a-1}(1-t)^{b-1} d t$.

Common distributions and their properties

B

Parameters	$\alpha, \beta \in \mathbb{R}>0$
Support	$x \in[0,1]$ or $x \in(0,1)$
PDF	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}$
CDF	$I(x, \alpha, \beta)$
Mean	$\frac{\alpha}{\alpha+\beta}$
Median	$I_{\frac{1}{2}}^{[-1]}(\alpha, \beta) \approx \frac{\alpha-\frac{1}{3}}{\alpha+\beta-\frac{2}{3}}$ for $\alpha, \beta>1$
Mode	$*^{2}$
Variance	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
Skewness	$\frac{2(\beta-\alpha) \sqrt{\alpha+\beta+1}}{(\alpha+\beta+2) \sqrt{\alpha \beta}}$
Ex. Kurtosis	$\frac{6\left[(\alpha-\beta)^{2}(\alpha+\beta+1)-\alpha \beta(\alpha+\beta+2)\right]}{\alpha \beta(\alpha+\beta+2)(\alpha+\beta+3)}$
MGF	$1+\sum_{k=1}^{\infty}\left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r}\right) \frac{t^{k}}{k!}$

- $B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$ and Γ is the Gamma function.
- $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t, \quad \Re(z)>0$, for complex numbers with a positive real part.
- Regularized incomplete beta function $I(x, a, b)=\frac{B(x, a, b)}{B(a, b)}$ with $B(x, a, b)=\int_{0}^{x} t^{a-1}(1-t)^{b-1} d t$.
- $\frac{\alpha-1}{\alpha+\beta-2}$ for $\alpha, \beta>1$; any value in $(0,1)$ for $\alpha, \beta=1 ;\{0,1\}$ (bimodal) for $\alpha, \beta<1 ; 0$ for $\alpha \leq 1, \beta>$ $1 ; 1$ for $\alpha>1, \beta \leq 1$.

References I

Greene, W. H. (2011): Econometric Analysis. Prentice Hall, 5 edn.

