Econometricks: Short guides to econometrics

Trick 01: Review of Probability Theory
Davud Rostam-Afschar (Uni Mannheim)

Content

1. Probability fundamentals
2. Mean and variance
3. Moments of a random variable
4. Useful rules

Discrete and continuous random variables

- A random variable X is discrete if the set of outcomes x is either finite or countably infinite.

- The random variable X is continuous if the set of outcomes x is infinitely divisible and, hence, not countable.

Discrete probabilities

For values x of a discrete random variable X, the probability mass function (pmf)

$$
f(x)=\operatorname{Prob}(X=x)
$$

The axioms of probability require

$$
\begin{gathered}
0 \leq \operatorname{Prob}(X=x) \leq 1, \\
\sum_{x} f(x)=1
\end{gathered}
$$

Discrete cumulative probabilities

For values x of a discrete random variable X, the cumulative distribution function

$$
F(x)=\sum_{x \leq x} f(x)=\operatorname{Prob}(X \leq x)
$$

where

$$
f\left(x_{i}\right)=F\left(x_{i}\right)-F\left(x_{i-1}\right)
$$

Example

Roll of a six-sided die

x	$f(x)$	$F(X \leq x)$
1	$f(1)=1 / 6$	$F(X \leq 1)=1 / 6$
2	$f(2)=1 / 6$	$F(X \leq 2)=2 / 6$
3	$f(3)=1 / 6$	$F(X \leq 3)=3 / 6$
4	$f(4)=1 / 6$	$F(X \leq 4)=4 / 6$
5	$f(5)=1 / 6$	$F(X \leq 5)=5 / 6$
6	$f(6)=1 / 6$	$F(X \leq 6)=6 / 6$

What's the probability that you roll a 5 or higher?
$F(X \geq 5)=1-F(X \leq 4)=1-2 / 3=1 / 3$.

Continuous probabilities

For values x of a continuous random variable X, the probability is zero but the area under $f(x) \geq 0$ in the range form a to b is the probability density function (pdf)

$$
\operatorname{Prob}(a \leq x \leq b)=\operatorname{Prob}(a<x<b)=\int_{a}^{b} f(x) d x \geq 0
$$

The axioms of probability require

$$
\int_{-\infty}^{+\infty} f(x) d x=1
$$

$f(x)=0$ outside the range of x.
The cumulative distribution function (cdf) is

$$
\begin{gathered}
F(x)=\int_{-\infty}^{x} f(t) d t \\
f(x)=\frac{d F(x)}{d x}
\end{gathered}
$$

Cumulative distribution function

For continuous and discrete variables, $F(x)$ satisfies

Definition

Properties of cdf.

- $0 \leq F(x) \leq 1$
- If $x>y$, then $F(x) \geq F(y)$
- $F(+\infty)=1$
- $F(-\infty)=0$
and

$$
\operatorname{Prob}(a<x \leq b)=F(b)-F(a) .
$$

Symmetric distributions

For symmetric distributions

$$
f(\mu-x)=f(\mu+x)
$$

and

$$
1-F(x)=F(-x)
$$

Mean of a random variable

The mean, or expected value, of a discrete random variable is

$$
\begin{equation*}
\mu=E[x]=\sum_{x} x f(x) \tag{1}
\end{equation*}
$$

Example

Roll of a six-sided die

x	$f(x)=1 / n$	$F(X \leq x)=(x-a+1) / n$
$\mathrm{a}=1$	$f(1)=1 / 6$	$F(X \leq 1)=1 / 6$
2	$f(2)=1 / 6$	$F(X \leq 2)=2 / 6$
3	$f(3)=1 / 6$	$F(X \leq 3)=3 / 6$
4	$f(4)=1 / 6$	$F(X \leq 4)=4 / 6$
5	$f(5)=1 / 6$	$F(X \leq 5)=5 / 6$
$\mathrm{~b}=6$	$f(6)=1 / 6$	$F(X \leq 6)=6 / 6$

What's the expected value from rolling the dice?
$E[x]=1 / 6+2 / 6+3 / 6+4 / 6+5 / 6+6 / 6=3.5$.
This is the mean (and the median) of a uniform distribution $(n+1) / 2=(a+b) / 2=3.5$.

Mean of a random variable

For a continuous random variable x, the expected value is

$$
E[x]=\int_{x} x f(x) d x
$$

Example

The continuous uniform distribution is $1 /(b-a)$ for $a \leq x \leq b$ and 0 otherwise.

$$
E[x]=\int_{a}^{b} \frac{x}{b-a} d x=\frac{1}{b-a} \int_{a}^{b} x d x
$$

Antiderivative of x is $x^{2} / 2$

$$
E[x]=\frac{1}{b-a} b^{2} / 2-a^{2} / 2=\frac{(b-a)(b+a)}{2(b-a)}=\frac{a+b}{2} .
$$

The mean (and the median) is again $(a+b) / 2=3.5$.
For a function $g(x)$ of x, the expected value is $E[g(x)]=\sum_{x} g(x) \operatorname{Prob}(X=x)$ or $E[g(x)]=\int_{x} g(x) f(x) d x$. If $g(x)=a+b x$ for constants a and b, then $E[a+b x]=a+b E[x]$.

Variance of a random variable

The variance of a random variable $\sigma^{2}>0$ is
$\sigma^{2}=\operatorname{Var}[x]=E\left[(x-\mu)^{2}\right]= \begin{cases}\sum_{x}(x-\mu)^{2} f(x) & \text { if } x \text { is discrete }, \\ \int_{x}(x-\mu)^{2} f(x) d x & \text { if } x \text { is continuous } .\end{cases}$

Example

Roll of a six-sided die. What's the variance $V[x]$ from rolling the dice?
The probability of observing $x, \operatorname{Pr}(X=x)=1 / n$, is discretely uniformly distributed

$$
\begin{gathered}
E[x]=\frac{n+1}{2} ;(E[x])^{2}=\frac{(n+1)^{2}}{4} . \\
E\left[x^{2}\right]=\sum_{x} \operatorname{Pr}(X=x)=\frac{1}{n} \sum_{x=1}^{n} x^{2}=\frac{(n+1)(2 n+1)}{6} \text { due to the sequence sum of squares. } \\
V[x]=E\left[x^{2}\right]-(E[x])^{2} \\
V[x]=\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{4}=\frac{n^{2}-1}{12}=\left(6^{2}-1\right) / 12 \approx 2.92 .
\end{gathered}
$$

Chebychev inequality

For any random variable x and any positive constant k,

$$
\operatorname{Pr}(\mu-k \sigma \leq x \leq \mu+k \sigma) \geq \frac{1}{k^{2}}
$$

Share outside k standard deviations.
If x is normally distributed, the bound is $1-(2 \Phi(k)-1)$.

95% of the observations are within 1.96 standard deviations for normally distributed x. If x is not normal, 95% are at most within 4.47 standard deviations.

Normal coverage

Central moments of a random variable

The central moments are

$$
\mu_{r}=E\left[(x-\mu)^{r}\right] .
$$

Example

Moments. Two measures often used to describe a probability distribution are

- expectation $=E\left[(x-\mu)^{1}\right]$
- variance $=E\left[(x-\mu)^{2}\right]$
- skewness $=E\left[(x-\mu)^{3}\right]$
- kurtosis $=E\left[(x-\mu)^{4}\right]$

The skewness is zero for symmetric distributions.

Higher order moments

(a) Skewness $=0$, kurtosis $=3$

(c) Skewness $=-0.1$, kurtosis $=5$

(b) Skewness $=0$, kurtosis $=20$

(d) Skewness $=0.6$, kurtosis $=5$

Moment generating function

For the random variable X, with probability density function $f(x)$, if the function

$$
M(t)=E\left[e^{t x}\right]
$$

exists, then it is the moment generating function(MGF).

- Often simpler alternative to working directly with probability density functions or cumulative distribution functions
- Not all random variables have moment-generating functions The nth moment is the nth derivative of the moment-generating function, evaluated at $t=0$.

Example

The MGF for the standard normal distribution with $\mu=0, \sigma=1$ is

$$
M_{z}(t)=e^{\mu t+\sigma^{2} t^{2} / 2}=e^{t^{2} / 2}
$$

If x and y are independent, then the MGF of $x+y$ is $M_{x}(t) M_{y}(t)$.

Moment generating function

For $x \sim N\left(\mu, \sigma^{2}\right)$ for some $\mu, \sigma>0$ with moment generating function $M_{x}{ }^{\prime}(t)=\exp \left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right)$, the first moment generating function of x is

$$
E\left[(x-\mu)^{1}\right]=M_{x}^{\prime}(t)=\left(\mu+\sigma^{2} t\right) \exp \left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right)
$$

Example

$$
\begin{gathered}
E\left[(x-\mu)^{1}\right]=M_{x}^{\prime}(t)=\frac{d\left[\exp \left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right)\right]}{d t} \\
=\frac{d\left[\mu t+\frac{1}{2} \sigma^{2} t^{2}\right]}{d t} \frac{d\left[\exp \left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right)\right]}{d\left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right)} \\
=\left(\mu+\sigma^{2} t\right) \exp \left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right) .
\end{gathered}
$$

Moment generating function

If $x \sim N(0,1)$,

- the skewness is $E\left[(x-\mu)^{3}\right]=0$ and
- the kurtosis is $E\left[(x-\mu)^{4}\right]=3$.

Example

$$
\begin{gathered}
E\left[(x-\mu)^{1}\right]=M_{x}^{\prime}(t)=\left(\mu+\sigma^{2} t\right) \exp \left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right) \text { with } \mu=0, \sigma=1, t=0: E[x]=\mu=0 \\
E\left[(x-\mu)^{2}\right]=M_{x}^{\prime \prime}(t)=\left(\sigma^{2}+\left(\mu+\sigma^{2} t\right)^{2}\right) \exp \left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right) \\
\text { with } \mu=0, \sigma=1, t=0: E\left[(x-\mu)^{2}\right]=\sigma^{2}=1 \\
E\left[(x-\mu)^{3}\right]=M_{x}^{\prime \prime \prime}(t)=\left(3 \sigma^{2}\left(\mu+\sigma^{2} t\right)+\left(\mu+\sigma^{2} t\right)^{3}\right) \exp \left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right) \\
\text { with } \mu=0, \sigma=1, t=0: E\left[(x-\mu)^{3}\right]=0 \\
E\left[(x-\mu)^{4}\right]=M_{x}^{(4)}(t)=\left(3 \sigma^{4}+6 \sigma^{2}\left(\mu+\sigma^{2} t\right)^{2}+\left(\mu+\sigma^{2} t\right)^{4}\right) \exp \left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right) \\
\text { with } \mu=0, \sigma=1, t=0: E\left[(x-\mu)^{4}\right]=3 .
\end{gathered}
$$

Approximating mean and variance

For any two functions $g_{1}(x)$ and $g_{2}(x)$,

$$
\begin{equation*}
E\left[g_{1}(x)+g_{2}(x)\right]=E\left[g_{1}(x)\right]+E\left[g_{2}(x)\right] \tag{3}
\end{equation*}
$$

For the general case of a possibly nonlinear $g(x)$,

$$
\begin{equation*}
E[g(x)]=\int_{x} g(x) f(x) d x \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}[g(x)]=\int_{x}(g(x)-E[g(x)])^{2} f(x) d x \tag{5}
\end{equation*}
$$

$E[g(x)]$ and $\operatorname{Var}[g(x)]$ can be approximated by a first order linear Taylor series:

$$
\begin{equation*}
g(x) \approx\left[g\left(x^{0}\right)-g^{\prime}\left(x^{0}\right) x^{0}\right]+g^{\prime}\left(x^{0}\right) x . \tag{6}
\end{equation*}
$$

Taylor approximation Order 1

Approximating mean and variance

A natural choice for the expansion point is $x^{0}=\mu=E(x)$. Inserting this value in Eq. (6) gives

$$
\begin{equation*}
g(x) \approx\left[g(\mu)-g^{\prime}(\mu) \mu\right]+g^{\prime}(\mu) x \tag{7}
\end{equation*}
$$

so that

$$
\begin{equation*}
E[g(x)] \approx g(\mu) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}[g(x)] \approx\left[g^{\prime}(\mu)\right]^{2} \operatorname{Var}[x] \tag{9}
\end{equation*}
$$

Example

Isoelastic utility. $c_{\text {bad }}=10.00$ Euro; $c_{\text {good }}=100.00$ Euro; probability good outcome 50\%
$\mu=E[c]=1 / 2 \times c_{\text {bad }}+1 / 2 \times c_{\text {good }}=55.00$ Euro

$$
u(c)=c^{1 / 2}
$$

$u(\mu)=7.42$ approximates $E[u(c)]=1 / 2 \times 10^{1 / 2}+1 / 2 \times 100^{1 / 2}=6.58$

Approximating mean and variance

Example

Isoelastic utility. $c_{b a d}=10.00$ Euro; $c_{g o o d}=100.00$ Euro; probability good outcome $50 \% ; \mu=55.00$ Euro

$$
u(c)=\ln (c)
$$

$u(\mu)=4.01$ approx. $E[u(c)]=$
$1 / 2 \times \ln (10)+1 / 2 \times \ln (100)=3.45$

Jensen's inequality:
$E[g(x)] \leq g(E[x])]$ if $g^{\prime \prime}(x)<0$.

$V[u(c)] \approx(1 / 55)^{2}\left((10-55)^{2}+(100-55)^{2}\right)=1.34$
$V[u(c)]=(\ln (10)-E[u(c)])^{2}+(\ln (100)-E[u(c)])^{2}=2.65$

Useful rules

- $\operatorname{Var}[x]=E\left[x^{2}\right]-\mu^{2}$
- $E\left[x^{2}\right]=\sigma^{2}+\mu^{2}$
- If a and b constants, $\operatorname{Var}[a+b x]=b^{2} \operatorname{Var}[x]$
- $\operatorname{Var}[a]=0$
- If $g(x)=a+b x$ and a and b are constants, $E[a+b x]=a+b E[x]$
- Coverage $\operatorname{Pr}(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}$
- Skewness $=E\left[(x-\mu)^{3}\right]$
- Kurtosis $=E\left[(x-\mu)^{4}\right]$
- For symmetric distributions $f(\mu-x)=f(\mu+x) ; 1-F(x)=F(-x)$
- $E[g(x)] \approx g(\mu)$
- $\operatorname{Var}[g(x)] \approx\left[g^{\prime}(\mu)\right]^{2} \operatorname{Var}[x]$

References I

Greene, W. H. (2011): Econometric Analysis. Prentice Hall, 5 edn.
Pishro-Nik, H. (2014): Introduction to Probability, Statistics, and Random Processes. Kappa Research LLC.

