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How to learn in very large
state-action spaces’



Approximate Q-Learning

SCORE: 63




Pacman as a Markov Decision Process

» Pacman’s action: one of North, South, East, West
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Pacman as a Markov Decision Process

Action

» Pacman’s action: one of North, South, East, West

State Definition
The MDP state is the entire game configuration after a full ply:
» Five binary flags:

» Pac-Man on field?
» Ghost on field?

» Food on field?

» Power-pill on field?
» Wall on field?

» A ‘“scared ghost” timer taking 40 integer values 0,1, ...,39
2% x 40 = 32 x 40 = 1280 states per field

Maze has 20 x 11 = 220 fields — a state is one out of 220 x 1280 = 281, 600
configurations (many of which are impossible).

Pacman has no way to generalize that running into a ghost is bad for all positions.



Deep Q-Networks

» Value or Q-Function Approximation
» Linear approximation
» Neural network approximation — Deep Q-network

(Goodfellow, 2016)



Q-function Approximation

> Let s = (x1,X1,.--,Xn)

» Linear
Q(s,a) ~ Z WajX;
i
» Non-linear (e.g., neural network)

Q(s,a) ~ g(x; w)



Gradient Q-learning?



Gradient Q-learning

» Minimize squared error between Q-value estimate and target

> Q-value estimate: Qu(s, a)
> Target: r +ymaxy Qs (s',a')

» Squared error:

Err(w) = 1/2 [Qw(s, a) = r —ymax Qw (s, a’)} 2 )

where W is treated fixed.

» Gradient
OErr B . n10Qu(s,a)
B = [ Qu(s:8) =1 = ymax Qe (s, )| =5 =



Gradient Q-learning

Gradient Q-learning (s, Q*)
Initialize weights w uniformly at random in [-1,1]
Observe current state s
Loop
Select action a and execute it
Receive immediate reward r
Observe new state s’
Gradient: 2E7 = [Qu(s,a) — r — 7 maxy Qu (s, 2)]

OErr
ow

Update weights: w < w — a5
Update state: s < s’

Until convergence of Q*
Return Q*

Oow

OQw(s,a

)




Convergence of Tabular Q-learning

» Tabular Q-Learning converges to optimal Q-function under the
following conditions:

(o] (o]
Sla, s o0oand Y (an)’ < oo
n=0 n=0

> Let a,(s,a) =1/n(s,a),
> where n(s, a) is # of times that (s, a) is visited

» Q-learning

Q(s,a) « Q(s,a) + an(s,a) [r+ max Q(s',a) — Q(s,a)
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Convergence of Linear Gradient Q-Learning

» Linear Q-Learning converges under the same conditions:

o0 (0]
Zan—>oo and Z(oc,,)2 < 0
n=0 n=0

» Leta,=1/n
> Let Qu(s,a) = wix;
» Q-learning

W w —a, |Qu(s,a) — r —ymax Qu (s, a)
a

8Qw(s, a)

ow
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Divergence of Non-linear Gradient Q-learning

» Even when the following conditions hold

o0 o0
Zan—>oo and z:(oz,,)2 < 00
n=0 n=0

non-linear Q-learning may diverge

» Intuition:
> Adjusting w to increase Q at (s, a) might introduce errors
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Mitigating divergence

Two tricks are often used in practice:

1. Experience replay

2. Use two networks:

» Q-network
» Target network

13



Experience Replay



Experience Replay

afsa)

(s.a)
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Experience Replay

» Idea: store previous experiences (s, a, s', r) into a buffer and sample
a mini-batch of previous experiences at each step to learn by
Q-learning

» Advantages

> Break correlations between successive updates (more stable learning)
» Fewer interactions with environment needed to converge
(greater data efficiency)
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Target Network



Target Network
» Idea: Use a separate target network that is updated only periodically

repeat for each (s, a,s’, r) in mini-batch:

9Quw (s, a)

w—w—oa,|Qu(s,a)—r—ymaxQy (s, )
——— ' S ———— ow

update target

wW<—w
» Advantage: mitigate divergence
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Target Network

» Idea: Use a separate target network that is updated only periodically

repeat for each (s, a,s’, r) in mini-batch:

OQuw(s, a
w—w—oa,|Qu(s,a)—r—ymaxQy (s, ) 5Qu(s,2)
N—_——— a —— ow
update target
wW<—w
» Advantage: mitigate divergence
» Similar to value iteration:

repeat for all s

K(i)/ — m;axR(s)—i—'yZIP’(s' | s,a) V (s') Vs

SI
update target

VeV
» Q-learning is a sampling version of value iteration
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Deep Q-network

Google Deep Mind:

» Deep Q-network: Gradient Q-learning with

» Deep neural networks
» Experience replay
» Target network

» Breakthrough: human-level play in many Atari video games
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Deep Q-network

DQNetwork (Qw (s, a))
Initialize weights w and W at random in [—1, 1]
Observe current state s
Loop

Select action a and execute it

Receive immediate reward r

Observe new state s’

Add (s, a, s’, r) to experience buffer

Update Q-func by sampling mini-batch from buffer

For each experience (3, 4, §, F) in mini-batch

Gradient: 9E — [Q,, (8, 8) — £ — y maxg, Qw (¥, &')] 9%ul&:3)

OErr
ow

Update weights: w < w — a
Update state: s « s’
Every c steps, update target: w <+ w
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Deep Q-Network for Atari

Convolution Convolution Fully connected Fully connected
v - - v

Source: Mnih et al. (2015)
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DQN versus Linear approx.
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Note: Human: 75% of professional human games tester. Source: Mnih et al. (2015)
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Takeaways



Deep Q-Learning (DQN)

» Combines Q-learning with deep neural networks for large
state-action spaces

> |t approximates Q-values by minimizing the Bellman error using
gradient descent

» Experience replay and target networks stabilize training and prevent
divergence

» DeepMind’s DQN achieved human-level performance on Atari
games with these techniques
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