
RLearning:

Short guides to reinforcement learning

Unit 4-3: Deep Q-Learning

Davud Rostam-Afschar (Uni Mannheim)

How to learn in very large
state-action spaces?

Approximate Q-Learning

3

Pacman as a Markov Decision Process

Action

▶ Pacman’s action: one of North, South, East, West

State Definition

The MDP state is the entire game configuration after a full ply:

▶ Five binary flags:

▶ Pac-Man on field?
▶ Ghost on field?
▶ Food on field?
▶ Power-pill on field?
▶ Wall on field?

▶ A “scared ghost” timer taking 40 integer values 0; 1; : : : ; 39

25 � 40 = 32� 40 = 1280 states per field

Maze has 20� 11 = 220 fields ! a state is one out of 220� 1280 = 281; 600
configurations (many of which are impossible).

4

Pacman as a Markov Decision Process

Action

▶ Pacman’s action: one of North, South, East, West

State Definition

The MDP state is the entire game configuration after a full ply:

▶ Five binary flags:

▶ Pac-Man on field?
▶ Ghost on field?
▶ Food on field?
▶ Power-pill on field?
▶ Wall on field?

▶ A “scared ghost” timer taking 40 integer values 0; 1; : : : ; 39

25 � 40 = 32� 40 = 1280 states per field

Maze has 20� 11 = 220 fields ! a state is one out of 220� 1280 = 281; 600
configurations (many of which are impossible).

4

Pacman as a Markov Decision Process

Action

▶ Pacman’s action: one of North, South, East, West

State Definition

The MDP state is the entire game configuration after a full ply:

▶ Five binary flags:

▶ Pac-Man on field?
▶ Ghost on field?
▶ Food on field?
▶ Power-pill on field?
▶ Wall on field?

▶ A “scared ghost” timer taking 40 integer values 0; 1; : : : ; 39
25 � 40 = 32� 40 = 1280 states per field

Maze has 20� 11 = 220 fields ! a state is one out of 220� 1280 = 281; 600
configurations (many of which are impossible).

4

Pacman as a Markov Decision Process

Action

▶ Pacman’s action: one of North, South, East, West

State Definition

The MDP state is the entire game configuration after a full ply:

▶ Five binary flags:

▶ Pac-Man on field?
▶ Ghost on field?
▶ Food on field?
▶ Power-pill on field?
▶ Wall on field?

▶ A “scared ghost” timer taking 40 integer values 0; 1; : : : ; 39
25 � 40 = 32� 40 = 1280 states per field

Maze has 20� 11 = 220 fields ! a state is one out of 220� 1280 = 281; 600
configurations (many of which are impossible).

4

Pacman as a Markov Decision Process

Action

▶ Pacman’s action: one of North, South, East, West

State Definition

The MDP state is the entire game configuration after a full ply:

▶ Five binary flags:

▶ Pac-Man on field?
▶ Ghost on field?
▶ Food on field?
▶ Power-pill on field?
▶ Wall on field?

▶ A “scared ghost” timer taking 40 integer values 0; 1; : : : ; 39
25 � 40 = 32� 40 = 1280 states per field

Maze has 20� 11 = 220 fields ! a state is one out of 220� 1280 = 281; 600
configurations (many of which are impossible).

Each board configuration is a separate state with separate Q-values.

4

Pacman as a Markov Decision Process

Action

▶ Pacman’s action: one of North, South, East, West

State Definition

The MDP state is the entire game configuration after a full ply:

▶ Five binary flags:

▶ Pac-Man on field?
▶ Ghost on field?
▶ Food on field?
▶ Power-pill on field?
▶ Wall on field?

▶ A “scared ghost” timer taking 40 integer values 0; 1; : : : ; 39
25 � 40 = 32� 40 = 1280 states per field

Maze has 20� 11 = 220 fields ! a state is one out of 220� 1280 = 281; 600
configurations (many of which are impossible).

Pacman has no way to generalize that running into a ghost is bad for all positions.

4

Deep Q-Networks

▶ Value or Q-Function Approximation
▶ Linear approximation
▶ Neural network approximation ! Deep Q-network

(Goodfellow, 2016)

5

Q-function Approximation

▶ Let s = (x1; x1; : : : ; xn)

▶ Linear

Q(s; a) �
X
i

waixi

▶ Non-linear (e.g., neural network)

Q(s; a) � g(x ;w)

6

Gradient Q-learning?

Gradient Q-learning

▶ Minimize squared error between Q-value estimate and target
▶ Q-value estimate: Qw(s; a)
▶ Target: r +
maxa0 Qw̄ (s 0

; a0)

▶ Squared error:

Err(w) = 1=2

�
Qw (s; a)� r �
max

a0

Qw
�
s 0; a0

��2
;

where w is treated fixed.

▶ Gradient

@Err

@w
=
h
Qw (s; a)� r �
max

a0
Qw

�
s 0; a0

�i @Qw (s; a)

@w

8

Gradient Q-learning

Gradient Q-learning (s, Q�)
Initialize weights w uniformly at random in [-1,1]
Observe current state s
Loop

Select action a and execute it

Receive immediate reward r

Observe new state s 0

Gradient: @Err
@w

= [Qw (s; a)� r �
maxa0 Qw (s 0; a0)] @Qw (s;a)
@w

Update weights: w w � �@Err
@w

Update state: s s 0

Until convergence of Q�

Return Q�

9

Convergence of Tabular Q-learning

▶ Tabular Q-Learning converges to optimal Q-function under the
following conditions:

1X
n=0

�n !1 and
1X
n=0

(�n)
2 <1

▶ Let �n(s; a) = 1=n(s; a);
▶ where n(s; a) is # of times that (s; a) is visited

▶ Q-learning

Q(s; a) Q(s; a) + �n(s; a)

�
r +
max

a0

Q
�
s 0; a0

�
� Q(s; a)

�

10

Convergence of Linear Gradient Q-Learning

▶ Linear Q-Learning converges under the same conditions:

1X
n=0

�n !1 and
1X
n=0

(�n)
2 <1

▶ Let �n = 1=n

▶ Let Qw (s; a) =
P

i wixi
▶ Q-learning

w w � �n

�
Qw (s; a)� r �
max

a0

Qw
�
s 0; a0

�� @Qw (s; a)
@w

11

Divergence of Non-linear Gradient Q-learning

▶ Even when the following conditions hold

1X
n=0

�n !1 and
1X
n=0

(�n)
2 <1

non-linear Q-learning may diverge

▶ Intuition:
▶ Adjusting w to increase Q at (s; a) might introduce errors

12

Mitigating divergence

Two tricks are often used in practice:

1. Experience replay

2. Use two networks:
▶ Q-network
▶ Target network

13

Experience Replay

Experience Replay

15

Experience Replay

▶ Idea: store previous experiences (s; a; s 0; r) into a buffer and sample
a mini-batch of previous experiences at each step to learn by
Q-learning

▶ Advantages
▶ Break correlations between successive updates (more stable learning)
▶ Fewer interactions with environment needed to converge

(greater data efficiency)

16

Target Network

Target Network

▶ Idea: Use a separate target network that is updated only periodically

repeat for each (s; a; s 0; r) in mini-batch:

w w � �n

2
64Qw (s; a)| {z }

update

�r �
max
a0

Qw̄
�
s 0; a0

�
| {z }

target

3
75 @Qw (s; a)

@w

w w

▶ Advantage: mitigate divergence

▶ Similar to value iteration:
repeat for all s

V (s)| {z }
update

 max
a

R(s) +

X
s 0

P
�
s 0 j s; a

�
V̄
�
s 0
�

| {z }
target

8s

V̄ V

▶ Q-learning is a sampling version of value iteration

18

Target Network

▶ Idea: Use a separate target network that is updated only periodically

repeat for each (s; a; s 0; r) in mini-batch:

w w � �n

2
64Qw (s; a)| {z }

update

�r �
max
a0

Qw̄
�
s 0; a0

�
| {z }

target

3
75 @Qw (s; a)

@w

w w

▶ Advantage: mitigate divergence
▶ Similar to value iteration:

repeat for all s

V (s)| {z }
update

 max
a

R(s) +

X
s 0

P
�
s 0 j s; a

�
V̄
�
s 0
�

| {z }
target

8s

V̄ V

▶ Q-learning is a sampling version of value iteration
18

Deep Q-network

Google Deep Mind:

▶ Deep Q-network: Gradient Q-learning with
▶ Deep neural networks
▶ Experience replay
▶ Target network

▶ Breakthrough: human-level play in many Atari video games

19

Deep Q-network

DQNetwork (Qw (s; a))
Initialize weights w and w at random in [�1; 1]
Observe current state s
Loop

Select action a and execute it
Receive immediate reward r
Observe new state s 0

Add (s; a; s 0; r) to experience buffer
Update Q-func by sampling mini-batch from buffer
For each experience (ŝ; â; ŝ 0; r̂) in mini-batch

Gradient: @Err
@w

= [Qw (ŝ; â)� r̂ �
maxba0Qw (ŝ 0; â0)] @Qw (ŝ;â)
@w

Update weights: w w � �@Err
@w

Update state: s s 0

Every c steps, update target: w w

20

Deep Q-Network for Atari

Source: Mnih et al. (2015)

21

DQN versus Linear approx.

Note: Human: 75% of professional human games tester. Source: Mnih et al. (2015)

22

References I

Goodfellow, I., Y. Bengio, and A. Courville (2016): Deep learning,
vol. 196. MIT press, Available at http://deeplearningbook.org/.

23

http://deeplearningbook.org/

Takeaways

Deep Q-Learning (DQN)

▶ Combines Q-learning with deep neural networks for large
state-action spaces

▶ It approximates Q-values by minimizing the Bellman error using
gradient descent

▶ Experience replay and target networks stabilize training and prevent
divergence

▶ DeepMind’s DQN achieved human-level performance on Atari
games with these techniques

25

	Deep Q-Networks
	Gradient Q-learning
	Experience Replay
	Target Network
	References
	Takeaways

