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How to improve flexibility of
approximation?



Deep Neural Networks



Deep Neural Networks

▶ Definition: neural network with many hidden layers

▶ Advantage: high expressivity
▶ Challenges:

▶ How should we train a deep neural network?
▶ How can we avoid overfitting?

(Goodfellow, Bengio, and Courville, 2016)
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Mixture of Gaussians

▶ Shallow neural network (flat
mixture)
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Image Classification

▶ ImageNet Large Scale Visual Recognition Challenge
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Vanishing Gradients



Vanishing Gradients

▶ Deep neural networks of sigmoid and hyperbolic units often suffer
from vanishing gradients
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Sigmoid and hyperbolic units

▶ Derivative is always less than 1
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Simple Example
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▶ Common weight initialization in (-1,1)

▶ Sigmoid function and its derivative always less than 1

▶ This leads to vanishing gradients:
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Mitigating Vanishing Gradients

▶ Some popular solutions:
▶ Pre-training
▶ Rectified linear units
▶ Batch normalization
▶ Skip connections
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Rectified Linear Units

▶ Rectified linear: h(a) = max(0; a)
▶ Gradient is 0 or 1
▶ Sparse computation

▶ Soft version

(“Softplus”):

h(a) = log (1 + ea)

▶ Warning: softplus does not prevent gradient vanishing
(gradient < 1 )
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Takeaways



How do Deep Neural Networks Help Modeling Complex Data?

▶ Use multiple hidden layers

▶ They enable complex function approximation

▶ A key challenge is the vanishing gradient problem

▶ Solutions include ReLU activation functions, batch normalization,
skip connections, and pre-training

▶ Rectified Linear Units (ReLU) help mitigate vanishing gradients

15


	Deep Neural Networks
	Vanishing Gradients
	References
	Takeaways

