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How to improve flexibility of
approximation?



Deep Neural Networks



Deep Neural Networks

» Definition: neural network with many hidden layers
» Advantage: high expressivity

» Challenges:

» How should we train a deep neural network?
» How can we avoid overfitting?

(Goodfellow, Bengio, and Courville, 2016)



Mixture of Gaussians

» Shallow neural network (flat
mixture)
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Mixture of Gaussians

» Shallow neural network (flat » Deep neural network
mixture) (hierarchical mixture)
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Mixture of Gaussians

» Shallow neural network (flat » Deep neural network
mixture) (hierarchical mixture)
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Sum-Product Network
(Exponentially large mixture of
Gaussians but linear hierachy)



Image Classification

» ImageNet Large Scale Visual Recognition Challenge

Features + SVMs Deep Convolutional Neural Nets
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Vanishing Gradients



Vanishing Gradients

» Deep neural networks of sigmoid and hyperbolic units often suffer
from vanishing gradients
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Sigmoid and hyperbolic units

» Derivative is always less than 1
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Simple Example

>y o <W4U(W3U(W20(W1X)>)>
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» Common weight initialization in (-1,1)

» Sigmoid function and its derivative always less than 1

» This leads to vanishing gradients:
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Mitigating Vanishing Gradients

» Some popular solutions:
» Pre-training
» Rectified linear units
» Batch normalization
» Skip connections
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Rectified Linear Units

» Rectified linear: h(a) = max(0, a)
» Gradient is 0 or 1
» Sparse computation
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Rectified Linear Units

» Rectified linear: h(a) = max(0, a)
» Gradient is 0 or 1
» Sparse computation

» Soft version “
(“Softplus”): .
h(a) = log (1 + &?)

a(x)

— Softplus

RELU vs SOFTPLUS

— Rectifier
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Rectified Linear Units

» Rectified linear: h(a) = max(0, a)
» Gradient is 0 or 1
» Sparse computation

» Soft version “
(“Softplus”): .
h(a) = log (1 + &?)

— Softplus

— Rectifier

» Warning: softplus does not prevent gradient vanishing
(gradient < 1)
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Takeaways



How do Deep Neural Networks Help Modeling Complex Data?

Use multiple hidden layers
They enable complex function approximation
A key challenge is the vanishing gradient problem

Solutions include RelLU activation functions, batch normalization,
skip connections, and pre-training

» Rectified Linear Units (ReLU) help mitigate vanishing gradients
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