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How to deal with very large
state-action spaces?



Tabular Value Iteration and Q-Learning

▶ Markov Decision Processes: value iteration
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▶ Complexity depends on number of states and actions
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Large State Spaces

▶ Computer Go: 3361 states

▶ Inverted pendulum: (x ; x 0; �; �0)
▶ 4-dimensional
▶ continuous state space

▶ Atari: 210� 160� 3 dimensions (pixel values)
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Functions to be Approximated

▶ Policy: �(s)! a

▶ Value function: V (s) 2 R

▶ Q-function: Q(s; a) 2 R
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Q-function Approximation

▶ Let s = (x1; x2; : : : ; xn)
! states are defined by a vector of features x .

▶ Linear

Q(s; a) �
X
i

waixi

▶ Non-linear (e.g., neural network)

Q(s; a) � g(x ;w)
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Traditional Neural Network

▶ Network of units
(computational
neurons) linked by
weighted edges

▶ Each unit computes:
z = h(w 0

x + b)
▶ Inputs: x
▶ Output: z
▶ Weights (parameters): w
▶ Bias: b
▶ Activation function (usually non-linear): h

Readings: Deep Neural Networks Goodfellow, Bengio, and Courville (2016,

chapters 6, 7, 8) 7



One hidden Layer Architecture

▶ Feed-forward neural network
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Common Activation Functions



Common activation functions h

▶ Threshold:

h(a) =

(
1 a � 0
�1 a < 0

▶ Sigmoid:
h(a) = �(a) = 1

1+e�a

▶ Gaussian:

h(a) = e�
1
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�
)
2

▶ Tanh : h(a) =

tanh(a) = ea�e�a

ea+e�a

▶ Identity: h(a) = a
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Universal Function Approximation



Universal function approximation

▶ Theorem: Neural networks with at least one hidden layer of
sufficiently many sigmoid/tanh/Gaussian units can approximate any
function arbitrarily closely.
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Minimize least squared error

▶ Minimize error function (Euclidian norm is commonly used for
distance)

J(W ) =
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n
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where J is the error function, f is the function encoded by the
neural net and n is the number data points.

▶ Train by gradient descent (a.k.a. backpropagation)
▶ For each example (xn; yn), adjust the weights as follows:
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� is the stepsize.
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Takeaways



Neural Nets to Approximate Policies, Value or Quality Functions

▶ Tabular methods fail in large or continuous state-action spaces

▶ Neural networks approximate
▶ policies,
▶ value functions, and
▶ Q-functions

▶ A basic network has
▶ weighted inputs,
▶ nonlinear activations, and
▶ outputs

▶ Neural networks can approximate any continuous function
(universal approximation)
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