
RLearning:

Short guides to reinforcement learning

Unit 4-1: Neural Networks

Davud Rostam-Afschar (Uni Mannheim)

How to deal with very large
state-action spaces?

Tabular Value Iteration and Q-Learning

▶ Markov Decision Processes: value iteration

V (s) max
a

R(s) +

X
s 0

P
�
s 0 j s; a

�
V
�
s 0
�

▶ Reinforcement Learning: Q-Learning

Q(s; a) Q(s; a) + �
h
r +
max

a
Q
�
s 0; a0

�
� Q(s; a)

i
▶ Complexity depends on number of states and actions

3

Large State Spaces

▶ Computer Go: 3361 states

▶ Inverted pendulum: (x ; x 0; �; �0)
▶ 4-dimensional
▶ continuous state space

▶ Atari: 210� 160� 3 dimensions (pixel values)

4

Functions to be Approximated

▶ Policy: �(s)! a

▶ Value function: V (s) 2 R

▶ Q-function: Q(s; a) 2 R

5

Q-function Approximation

▶ Let s = (x1; x2; : : : ; xn)
! states are defined by a vector of features x .

▶ Linear

Q(s; a) �
X
i

waixi

▶ Non-linear (e.g., neural network)

Q(s; a) � g(x ;w)

6

Traditional Neural Network

▶ Network of units
(computational
neurons) linked by
weighted edges

▶ Each unit computes:
z = h(w 0

x + b)
▶ Inputs: x
▶ Output: z
▶ Weights (parameters): w
▶ Bias: b
▶ Activation function (usually non-linear): h

Readings: Deep Neural Networks Goodfellow, Bengio, and Courville (2016,

chapters 6, 7, 8) 7

One hidden Layer Architecture

▶ Feed-forward neural network

x1

x2

z1

z2

y1

1 1

w
(1)
11

w
(1)
21

w
(1)
12

w
(1)
22

w
(2)
11

w
(2)
12

b
(1)
1

b
(1)
2

b
(2)
1Input Hidden

Output

▶ Hidden units: zj = h1
�
w

0(1)
j x + b

(1)
j

�
▶ Output units: yk = h2

�
w

0(2)
k z + b

(2)
k

�
▶ Overall: yk = h2

�P
j w

(2)
kj h1

�P
i w

(1)
ji xi + b

(1)
j

�
+ b

(2)
k

�

8

Common Activation Functions

Common activation functions h

▶ Threshold:

h(a) =

(
1 a � 0
�1 a < 0

▶ Sigmoid:
h(a) = �(a) = 1

1+e�a

▶ Gaussian:

h(a) = e�
1
2(

a��
�
)
2

▶ Tanh : h(a) =

tanh(a) = ea�e�a

ea+e�a

▶ Identity: h(a) = a

10

Common activation functions h

▶ Threshold:

h(a) =

(
1 a � 0
�1 a < 0

▶ Sigmoid:
h(a) = �(a) = 1

1+e�a

▶ Gaussian:

h(a) = e�
1
2(

a��
�
)
2

▶ Tanh : h(a) =

tanh(a) = ea�e�a

ea+e�a

▶ Identity: h(a) = a

10

Common activation functions h

▶ Threshold:

h(a) =

(
1 a � 0
�1 a < 0

▶ Sigmoid:
h(a) = �(a) = 1

1+e�a

▶ Gaussian:

h(a) = e�
1
2(

a��
�
)
2

▶ Tanh : h(a) =

tanh(a) = ea�e�a

ea+e�a

▶ Identity: h(a) = a

10

Common activation functions h

▶ Threshold:

h(a) =

(
1 a � 0
�1 a < 0

▶ Sigmoid:
h(a) = �(a) = 1

1+e�a

▶ Gaussian:

h(a) = e�
1
2(

a��
�
)
2

▶ Tanh : h(a) =

tanh(a) = ea�e�a

ea+e�a

▶ Identity: h(a) = a

10

Common activation functions h

▶ Threshold:

h(a) =

(
1 a � 0
�1 a < 0

▶ Sigmoid:
h(a) = �(a) = 1

1+e�a

▶ Gaussian:

h(a) = e�
1
2(

a��
�
)
2

▶ Tanh : h(a) =

tanh(a) = ea�e�a

ea+e�a

▶ Identity: h(a) = a

10

Common activation functions h

▶ Threshold:

h(a) =

(
1 a � 0
�1 a < 0

▶ Sigmoid:
h(a) = �(a) = 1

1+e�a

▶ Gaussian:

h(a) = e�
1
2(

a��
�
)
2

▶ Tanh : h(a) =

tanh(a) = ea�e�a

ea+e�a

▶ Identity: h(a) = a

10

Common activation functions h

▶ Threshold:

h(a) =

(
1 a � 0
�1 a < 0

▶ Sigmoid:
h(a) = �(a) = 1

1+e�a

▶ Gaussian:

h(a) = e�
1
2(

a��
�
)
2

▶ Tanh : h(a) =

tanh(a) = ea�e�a

ea+e�a

▶ Identity: h(a) = a

10

Universal Function Approximation

Universal function approximation

▶ Theorem: Neural networks with at least one hidden layer of
sufficiently many sigmoid/tanh/Gaussian units can approximate any
function arbitrarily closely.

12

Minimize least squared error

▶ Minimize error function (Euclidian norm is commonly used for
distance)

J(W) =
1

2

X
n

Jn(W)2 =
1

2

X
n

kf (xn;W)� ynk
2
2

where J is the error function, f is the function encoded by the
neural net and n is the number data points.

▶ Train by gradient descent (a.k.a. backpropagation)
▶ For each example (xn; yn), adjust the weights as follows:

wji wji � �
@Jn
@wji

� is the stepsize.

13

Minimize least squared error

▶ Train by gradient descent (a.k.a. backpropagation)
▶ For each example (xn; yn), adjust the weights as follows:

14

References I

Goodfellow, I., Y. Bengio, and A. Courville (2016): Deep learning,
vol. 196. MIT press, Available at http://deeplearningbook.org/.

15

http://deeplearningbook.org/

Takeaways

Neural Nets to Approximate Policies, Value or Quality Functions

▶ Tabular methods fail in large or continuous state-action spaces

▶ Neural networks approximate
▶ policies,
▶ value functions, and
▶ Q-functions

▶ A basic network has
▶ weighted inputs,
▶ nonlinear activations, and
▶ outputs

▶ Neural networks can approximate any continuous function
(universal approximation)

17

	Neural Networks
	Traditional Neural Network
	Common Activation Functions
	Universal Function Approximation
	References
	Takeaways

