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How to learn from episodes?



RL Algorithms

Dynamic Programming Backup

V(St) ¢ Er [Re1 + 7 V(Se41)]
s

Source: David Silver



RL Algorithms

Monte Carlo Backup

V(St) « V(St) + o (G — V(St))

S

Source: David Silver



RL Algorithms

Temporal Difference Backup

V(St) < V(St) + a(Resr + 7V(St41) — V(St))

Source: David Silver



Model Free Evaluation

» Given a policy T estimate V™ (s) without any transition
or reward model

» Monte Carlo evaluation
V7 (s) = Ep lz 'ytrt]
t

n(s)
-~ i Z [Z ,ytrt(k)] (sample approximation)
n(S) k—1 t



Toy Maze Example

; Start state: (1,1)
d r r|+1 Terminal states: (4,2), (4,3)
. No discount: y=1
2| w u |1
Reward is -0.04 for non-terminal states
Il u | | |
1 2 3 4

Four actions:

> up (u), Do not know the transition probabilities
> left (1),

> right (r),
» down (d)

What is the value V/(s) of being in state s



Monte Carlo Evaluation



Monte Carlo Evaluation
> Let Gk be a one-trajectory Monte Carlo target

Gk = Z’th:(k)
t

r r +1
O OE

u (1 |

1 2 4




Monte Carlo Evaluation
> Let Gk be a one-trajectory Monte Carlo target

Gk = Z’th:(k)
t

» First sample (k =1) :
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Monte Carlo Evaluation
> Let Gk be a one-trajectory Monte Carlo target

Gk = Z’th:(k)
t

» First sample (k =1) :

(L,1) = (1,2) = (1,3) = (1,2) = (1,3) = (2,3) = (3,3) = (4,3)

—0.04 —0.04 — 0.04 —-0.04 —0.04 —0.04 —0.04+1
Gy =0.72

» Second sample (k = 2) :

(1,1) = (1,2) = (1,3) = (2,3) = (3,3) = (3,2) = (3,3) = (4,3)

—0.04 —0.04 — 0.04 — 0.04 — 0.04 — 0.04 — 0.04 +1

Gy, =0.72

3l r r r _|_]_
» Third sample (k = 3):

21 U u (-1
(1,1) = (2,1) = (3,1) = (3,2) = (4,2)
—0.04 —0.04 —0.04 —0.04 -1

hw | |
Gz = —1.16

1 2 3 4




Monte Carlo Evaluation

» Let G be a one-trajectory Monte Carlo target Gy = Et’ytrt(k)

» Approximate value function

o
—

0
~

VT (s) ~ (1)

||M
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Monte Carlo Evaluation

» Let G be a one-trajectory Monte Carlo target Gy = Et’ytrt(k)

» Approximate value function

- 1
Vy(s) ~ (s) 2 Gk

1 n(s)—1
= s | Gt T Gk
n(s) Pt

_ n(ls) (Gogey + (n(s) = DV 4(5))

=V (s)+ n(ls) (Gn(s) - Vﬁil(s))



Monte Carlo Evaluation

» Let G be a one-trajectory Monte Carlo target Gy = Et’ytrt(k)

» Approximate value function

- 1
Vy(s) ~ (s) 2 Gk

1 n(s)—1
= s | Gt T Gk
n(s) Pt

_ n(ls) (Gogey + (n(s) = DV 4(5))

v 1 ™
= V() + 5 (G = V(o))
» Incremental update

Vi (s) < Viii(s) +an (G — Vi4(s)),

where o, = learning rate 1/n(s)



Exploration vs Exploitation

Stochastic approximation (Robbins-Monro algorithm)
» Theorem: If o, is appropriately decreased with number of times a
state is visited then V/7(s) converges to correct value
» Sufficient conditions for o, :

» Often an(s) = 1/n(s), where n(s) = # of times s is visited
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Exploration vs Exploitation

Stochastic approximation (Robbins-Monro algorithm)
» Theorem: If o, is appropriately decreased with number of times a
state is visited then V/7(s) converges to correct value
» Sufficient conditions for o, :

dal <o (2)
n
» Often an(s) = 1/n(s), where n(s) = # of times s is visited

n(s) on
2 50%
5 20%
10 10%
20 5%
40 2.5%

80 1.25%



First-visit Monte Carlo (MC) Evaluation

MCevaluation (m, V™)

Initialize
7 <— policy to be evaluated
V7 (s) < arbitrary state-value function
n(s) <0, VseS

Repeat
Generate the kth episode using 7(s)
For each state t appearing in the episode
Return r following the first occurrence of t
Update counts: n(s) < n(s) +1
Learning rate: a + 1/n(s)
Update value: V7™(s) «+ V™(s) + « (Zt’ytrt(k) — V”(s))

Until convergence of V™

Return V™

10



Monte Carlo Control



Monte Carlo Control

» Let G be a one-trajectory Monte Carlo target

+Z,yt (k)

%,_/
o

» Alternate between
» Policy evaluation

Qr(s,a) « Q7 4(s,a) + an (GF —

> Policy improvement

7' (s) < argmaxQ™ (s, a)
a

Qn 1(s a))

12
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Takeaways



How to Learn Values Using Monte Carlo Methods?

» No need to know transition probabilities or reward function
— Model free

» Average returns from complete episodes under the target policy
— Unbiased value estimation from samples

» Revises estimates only after each episode using the observed return
— Needs many trajectories

15
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