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How to learn from episodes?



RL Algorithms

Dynamic Programming Backup

Source: David Silver
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RL Algorithms

Monte Carlo Backup

Source: David Silver
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RL Algorithms

Temporal Difference Backup

Source: David Silver
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Model Free Evaluation

▶ Given a policy � estimate V �(s) without any transition
or reward model

▶ Monte Carlo evaluation
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Toy Maze Example
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Start state: (1,1)
Terminal states: (4,2), (4,3)
No discount: 
=1

Reward is -0.04 for non-terminal states

Four actions:

▶ up (u),

▶ left (l),

▶ right (r),

▶ down (d)

Do not know the transition probabilities

What is the value V (s) of being in state s
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Monte Carlo Evaluation



Monte Carlo Evaluation
▶ Let Gk be a one-trajectory Monte Carlo target

Gk =
X
t



t r

(k)
t

▶ First sample (k = 1) :

(1; 1)! (1; 2)! (1; 3)! (1; 2)! (1; 3)! (2; 3)! (3; 3)! (4; 3)

� 0:04� 0:04� 0:04� 0:04� 0:04� 0:04� 0:04 + 1

G1 = 0:72

▶ Second sample (k = 2) :

(1; 1)! (1; 2)! (1; 3)! (2; 3)! (3; 3)! (3; 2)! (3; 3)! (4; 3)

� 0:04� 0:04� 0:04� 0:04� 0:04� 0:04� 0:04 + 1

G2 = 0:72

▶ Third sample (k = 3):

(1; 1)! (2; 1)! (3; 1)! (3; 2)! (4; 2)

� 0:04� 0:04� 0:04� 0:04� 1

G3 = �1:16
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Monte Carlo Evaluation

▶ Let Gk be a one-trajectory Monte Carlo target Gk =
P

t 

tr

(k)
t

▶ Approximate value function

V �

n (s) �
1

n(s)

n(s)X
k=1

Gk

=
1

n(s)

0
@Gn(s) +

n(s)�1X
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▶ Incremental update

V �

n (s) V �

n�1(s) + �n
�
Gn � V �

n�1(s)
�
;

where �n = learning rate 1/n(s)
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Exploration vs Exploitation

Stochastic approximation (Robbins-Monro algorithm)
▶ Theorem: If �n is appropriately decreased with number of times a

state is visited then V �

n (s) converges to correct value
▶ Sufficient conditions for �n :

X
n

�n !1 (1)

X
n

�2
n <1 (2)

▶ Often �n(s) = 1=n(s), where n(s) = # of times s is visited

n(s) �n

2 50%
5 20%

10 10%
20 5%
40 2.5%
80 1.25%
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First-visit Monte Carlo (MC) Evaluation

MCevaluation (�;V �)
Initialize
�  policy to be evaluated
V �(s) arbitrary state-value function
n(s) 0; 8 s 2 S

Repeat
Generate the kth episode using �(s)
For each state t appearing in the episode
Return r following the first occurrence of t
Update counts: n(s) n(s) + 1
Learning rate: � 1=n(s)

Update value: V �(s) V �(s) + �
�P

t 

tr

(k)
t � V �(s)

�
Until convergence of V �

Return V �
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Monte Carlo Control



Monte Carlo Control

▶ Let G a
k be a one-trajectory Monte Carlo target

G a
k = r

(k)
0|{z}
a

+
X
t=1


t
�
r
(k)
t| {z }

�

▶ Alternate between
▶ Policy evaluation

Q�

n (s; a) Q�

n�1(s; a) + �n

�
G a
k � Q�

n�1(s; a)
�

▶ Policy improvement

�
0(s) argmax

a
Q�(s; a)
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Takeaways



How to Learn Values Using Monte Carlo Methods?

▶ No need to know transition probabilities or reward function
! Model free

▶ Average returns from complete episodes under the target policy
! Unbiased value estimation from samples

▶ Revises estimates only after each episode using the observed return
! Needs many trajectories
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