RLearning:

Short guides to reinforcement learning

Unit 3-1: Overview Reinforcement Learning

Davud Rostam-Afschar (Uni Mannheim)

How computers (humans) learn?

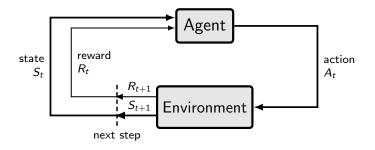
Markov Decision Process

- Definition
 - ▶ States: $s \in S$
 - ▶ Actions: *a* ∈ *A*
 - ▶ Rewards: $r \in \mathbb{R}$
 - ► Transition model: $\mathbb{P}(s_t \mid s_{t-1}, a_{t-1})$
 - ightharpoonup Reward model: $\mathbb{P}(r_t|s_t, a_t)$
 - ▶ Discount factor: $0 \le \gamma \le 1$
 - discounted: $\gamma < 1$
 - undiscounted: $\gamma = 1$
 - ► Horizon (i.e., # of time steps): h
 - Finite horizon: $h \in \mathbb{N}$
 - ▶ infinite horizon: $h = \infty$
- ▶ Goal: find optimal policy π^* such that

$$\pi^* = \operatorname*{argmax}_{\pi} \sum_{t=0}^{h} \gamma^t \mathbb{E}_{\pi} \left[r_t \right]$$

3

Reinforcement Learning Problem



Goal: Learn to choose actions that maximize rewards

Reinforcement Learning

- Definition
 - ▶ States: $s \in S$
 - Actions: $a \in A$
 - ▶ Rewards: $r \in \mathbb{R}$
 - ► Transition model: $\mathbb{P}(s_t \mid s_{t-1}, a_{t-1})$
 - ▶ Reward model: $\mathbb{P}(r_t|s_t, a_t)$
 - ▶ Discount factor: $0 \le \gamma \le 1$
 - discounted: $\gamma < 1$
 - undiscounted: $\gamma = 1$
 - ► Horizon (i.e., # of time steps): h
 - Finite horizon: $h \in \mathbb{N}$
 - ▶ infinite horizon: $h = \infty$
- ▶ Goal: find optimal policy π^* such that

 $\pi^* = \operatorname*{argmax}_{\pi} \sum_{t=0}^{h} \gamma^t \mathbb{E}_{\pi} \left[r_t \right]$

unknown model

Policy Optimization

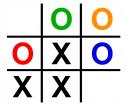
- ► Markov Decision Process:
 - Find optimal policy given transition and reward model
 - Execute policy found
- ► Reinforcement learning:
 - ► Learn an optimal policy while interacting with the environment

Policy Optimization

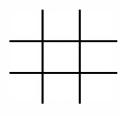
- ► Markov Decision Process:
 - Find optimal policy given transition and reward model
 - Execute policy found
- ► Reinforcement learning:
 - Learn an optimal policy while interacting with the environment

Policy Optimization

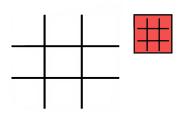
- ► Markov Decision Process:
 - Find optimal policy given transition and reward model
 - Execute policy found
- ► Reinforcement learning:
 - Learn an optimal policy while interacting with the environment



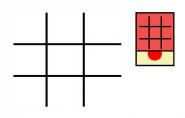
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



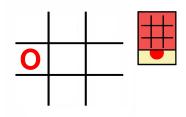
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



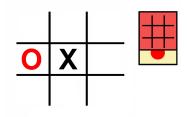
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



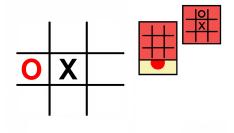
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



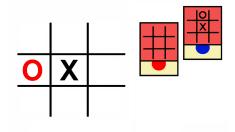
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



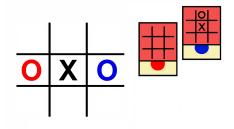
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



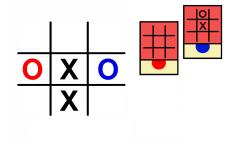
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



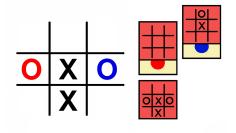
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



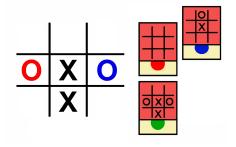
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



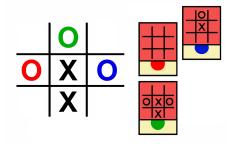
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



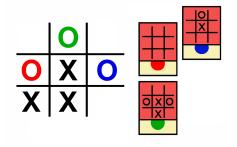
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



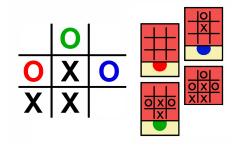
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



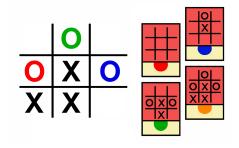
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



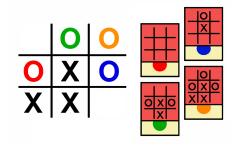
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



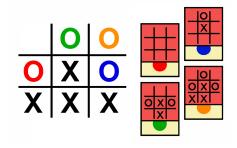
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



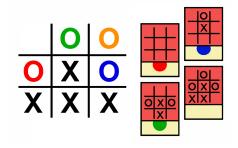
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



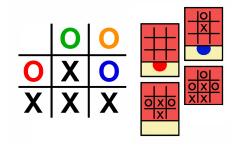
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



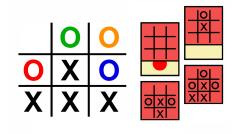
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



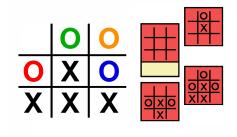
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



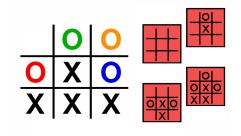
- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



- ► Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



- Machine Educable Noughts And Crosses Engine (MENACE)
- ▶ Build by Donald Michie in 1961 using 304 matchboxes



Source: Matthew Scroggs

 $\begin{array}{cccc} \textbf{Lose} & \rightarrow & & \text{Remove the bead from each box} \\ \textbf{Win} & \rightarrow & & \text{Add three beads to each box} \\ \textbf{Draw} & \rightarrow & & \text{Add one bead to each box} \\ \end{array}$

Important Components in Reinforcement Learning

Reinforcement learning agents may or may not include the following components:

- ▶ Model: $\mathbb{P}(s' \mid s, a), \mathbb{P}(r \mid s, a)$
 - Environment dynamics and rewards
- ▶ Policy: $\pi(s)$
 - Agent action choices
- **Value function:** V(s)
 - Expected total rewards of the agent's policy

Important Components in Reinforcement Learning

Reinforcement learning agents may or may not include the following components:

- ▶ Model: $\mathbb{P}(s' \mid s, a), \mathbb{P}(r \mid s, a)$
 - Environment dynamics and rewards
- ▶ Policy: $\pi(s)$
 - Agent action choices
- **Value function:** V(s)
 - Expected total rewards of the agent's policy
- **Quality function:** Q(s, a)
 - Expected total rewards of taking a specific action in a given state

Bellman's Equation

▶ Optimal state value function $V^*(s)$

$$V^*(s) = \max_{a} E[r \mid s, a] + \gamma \sum_{s'} \mathbb{P}\left(s' \mid s, a\right) V^*\left(s'\right)$$

▶ Optimal state-action value function $Q^*(s, a)$

$$Q^*(s, a) = E[r \mid s, a] + \gamma \sum_{s'} \mathbb{P}\left(s' \mid s, a\right) \max_{a'} Q^*\left(s', a'\right)$$

where
$$V^*(s) = \max_a Q^*(s, a)$$

 $\pi^*(s) = \operatorname*{argmax}_a Q^*(s, a)$

9

Categorizing RL Agents

Categorizing RL Agents

Value based

- ► No policy (implicit)
- ► Value function

Policy based

- Policy
- ► No value function

Actor critic

- Policy
- Value function

Model based

► Transition and reward model

Model free

- No transition model (implicit)
- ► No reward model (implicit)

Categorizing RL Agents

Value based

- ► No policy (implicit)
- ► Value function

Policy based

- Policy
- ► No value function

Actor critic

- Policy
- Value function

Model based

► Transition and reward model

Model free

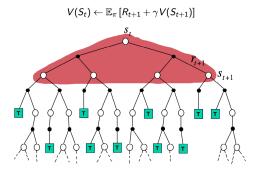
- No transition model (implicit)
- ► No reward model (implicit)

Imitation Learning

- ► No transition model (implicit)
- ► Reward model implicit through experts

RL Algorithms

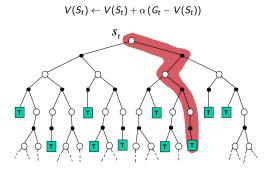
Dynamic Programming Backup



Source: David Silver

RL Algorithms

Monte Carlo Backup

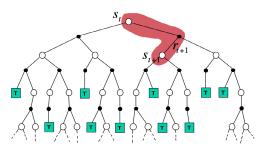


Source: David Silver

RL Algorithms

Temporal Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$



Source: David Silver

Toy Maze Example

3	r	r	r	+1
2	u		u	-1
1	u	ı	ı	I
	1	2	3	4

Start state: (1,1)

Terminal states: (4,2), (4,3)

No discount: $\gamma = 1$

Reward is -0.04 for non-terminal states

Four actions:

- **▶** up (**u**),
- ► left (**I**),
- **▶** right (**r**),
- **▶** down (**d**)

Do not know the transition probabilities

What is the value V(s) of being in state s

Toy Maze Example (No Learning, Noise 20%)

References I

- DENERO, J., D. KLEIN, B. MILLER, N. HAY, AND P. ABBEEL (2013): "The Pacman Al Projects," http://inst.eecs.berkeley.edu/~cs188/pacman/, Developed at UC Berkeley. Core by John DeNero and Dan Klein; student autograding by Brad Miller, Nick Hay, and Pieter Abbeel.
- POUPART, P. (2025): "Pascal Poupart's Homepage," https://cs.uwaterloo.ca/~ppoupart/, Accessed: 2025-05-24.
- Russell, S. J., and P. Norvig (2016): Artificial intelligence: a modern approach. Pearson.
- SIGAUD, O., AND O. BUFFET (2013): Markov decision processes in artificial intelligence. John Wiley & Sons.
- SUTTON, R. S., AND A. G. BARTO (2018): "Reinforcement learning: An introduction," *A Bradford Book*, Available at http://incompleteideas.net/book/the-book-2nd.html.
- SZEPESVÁRI, C. (2022): Algorithms for reinforcement learning. Springer nature, Available at https://sites.ualberta.ca/~szepesva/RLBook.html.

Takeaways

Takeaways

- "By three methods we may learn wisdom:
 - First, by reflection, which is noblest model-based RL;
 - ► Second, by imitation, which is easiest imitation learning; and
 - ▶ third by experience, which is the bitterest model free RL."

- RL agent types:
 - value-based,
 - policy-based,
 - value-policy-based (actor-critic),
 - model-based.
 - model-free
 - ▶ imitation learning