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How computers (humans) learn?



Markov Decision Process

▶ Definition
▶ States: s 2 S
▶ Actions: a 2 A
▶ Rewards: r 2 R
▶ Transition model: P (st j st�1; at�1)
▶ Reward model: P(rt jst ; at)
▶ Discount factor: 0 � 
 � 1

▶ discounted: 
 < 1
▶ undiscounted: 
 = 1

▶ Horizon (i.e., # of time steps): h
▶ Finite horizon: h 2 N
▶ infinite horizon: h =1

▶ Goal: find optimal policy �
� such that

�
� = argmax

�

hX

t=0



tE� [rt ]
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Reinforcement Learning Problem

Agent

Environment

state
St

reward
Rt

action
At

St+1

Rt+1

next step

Goal: Learn to choose actions that maximize rewards
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Reinforcement Learning

▶ Definition
▶ States: s 2 S
▶ Actions: a 2 A
▶ Rewards: r 2 R
▶ Transition model: P (st j st�1; at�1) unknown
▶ Reward model: P(rt jst ; at) model
▶ Discount factor: 0 � 
 � 1

▶ discounted: 
 < 1
▶ undiscounted: 
 = 1

▶ Horizon (i.e., # of time steps): h
▶ Finite horizon: h 2 N
▶ infinite horizon: h =1

▶ Goal: find optimal policy �
� such that

�
� = argmax

�

hX

t=0



tE� [rt ]

5



Policy Optimization

▶ Markov Decision Process:
▶ Find optimal policy given transition and reward model
▶ Execute policy found

▶ Reinforcement learning:
▶ Learn an optimal policy while interacting with the environment
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Example: MENACE

▶ Machine Educable Noughts And Crosses Engine (MENACE)

▶ Build by Donald Michie in 1961 using 304 matchboxes

Source: Matthew Scroggs

Lose ! Remove the bead from each box
Win ! Add three beads to each box
Draw ! Add one bead to each box
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Important Components in Reinforcement Learning

Reinforcement learning agents may or may not include the following
components:

▶ Model: P (s 0 j s; a) ;P(r j s; a)
▶ Environment dynamics and rewards

▶ Policy: �(s)
▶ Agent action choices

▶ Value function: V (s)
▶ Expected total rewards of the agent’s policy

▶ Quality function: Q(s; a)
▶ Expected total rewards of taking a specific action in a given state
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Bellman’s Equation

▶ Optimal state value function V �(s)

V �(s) = max
a

E [r j s; a] + 


X

s 0

P
�
s 0 j s; a

�
V �
�
s 0
�

▶ Optimal state-action value function Q�(s; a)

Q�(s; a) = E [r j s; a] + 


X

s 0

P
�
s 0 j s; a

�
max
a0

Q�
�
s 0; a0

�

where V �(s) = maxa Q
�(s; a)

�
�(s) = argmax

a
Q�(s; a)

9



Categorizing RL Agents



Categorizing RL Agents

Value based

▶ No policy (implicit)

▶ Value function

Policy based

▶ Policy

▶ No value function

Actor critic

▶ Policy

▶ Value function

Model based

▶ Transition and reward
model

Model free

▶ No transition model
(implicit)

▶ No reward model
(implicit)
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Categorizing RL Agents

Value based

▶ No policy (implicit)

▶ Value function

Policy based

▶ Policy

▶ No value function

Actor critic

▶ Policy

▶ Value function

Model based

▶ Transition and reward
model

Model free

▶ No transition model
(implicit)

▶ No reward model
(implicit)

Imitation Learning

▶ No transition model
(implicit)

▶ Reward model implicit
through experts
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RL Algorithms

Dynamic Programming Backup

Source: David Silver
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RL Algorithms

Monte Carlo Backup

Source: David Silver
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RL Algorithms

Temporal Difference Backup

Source: David Silver
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Toy Maze Example

3

2

1

1 2 3 4

r r r +1

u u −1

u l l l

Start state: (1,1)
Terminal states: (4,2), (4,3)
No discount: 
=1

Reward is -0.04 for non-terminal states

Four actions:

▶ up (u),

▶ left (l),

▶ right (r),

▶ down (d)

Do not know the transition probabilities

What is the value V (s) of being in state s
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Toy Maze Example (No Learning, Noise 20%)
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Takeaways



Takeaways

▶ “By three methods we may learn wisdom:
▶ First, by reflection, which is noblest model-based RL;
▶ Second, by imitation, which is easiest imitation learning; and
▶ third by experience, which is the bitterest model free RL.”

▶ RL agent types:
▶ value-based,
▶ policy-based,
▶ value-policy-based (actor-critic),
▶ model-based,
▶ model-free
▶ imitation learning
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