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Unit 3-1: Overview Reinforcement Learning
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How computers (humans) learn?



Markov Decision Process

» Definition
> States: s€ S
Actions: a € A
Rewards: r € R
Transition model: P (s; | s;—1, ar—1)
Reward model: P(r¢|s;, ar)
Discount factor: 0 <y <1
» discounted: v < 1
» undiscounted: ¥ =1
» Horizon (i.e., # of time steps): h
» Finite horizon: h € N
» infinite horizon: h = co

\ A A A {

» Goal: find optimal policy 7* such that

h
7 = argmax »_ Y'Er [r]
T =0



Reinforcement Learning Problem
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Goal: Learn to choose actions that maximize rewards



Reinforcement Learning

» Definition

>
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States: s € S
Actions: a € A
Rewards: r € R
Transition model: P (s; | s¢—1, ar—1)
Reward model: P(r¢|s¢, ar)
Discount factor: 0 <y <1
» discounted: vy < 1
» undiscounted: ¥ =1
Horizon (i.e., # of time steps): h
» Finite horizon: h € N
» infinite horizon: h = oo

» Goal: find optimal policy 7* such that

unknown
model

h
7 = argmax R [r
gw Z'Y m [re]

t=0



Policy Optimization

» Markov Decision Process:

» Find optimal policy given transition and reward model
» Execute policy found

» Reinforcement learning:
» Learn an optimal policy while interacting with the environment
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Example: MENACE

» Machine Educable Noughts And Crosses Engine (MENACE)
» Build by Donald Michie in 1961 using 304 matchboxes

Source: Matthew Scroggs
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Lose — Remove the bead from each box
Win — Add three beads to each box
Draw — Add one bead to each box
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Important Components in Reinforcement Learning

Reinforcement learning agents may or may not include the following
components:

» Model: P(s'|s,a),P(r]|s,a)

» Environment dynamics and rewards
> Policy: 7(s)

» Agent action choices

» Value function: V/(s)
» Expected total rewards of the agent’s policy



Important Components in Reinforcement Learning

Reinforcement learning agents may or may not include the following
components:

» Model: P(s'|s,a),P(r]|s,a)
» Environment dynamics and rewards
> Policy: 7(s)
» Agent action choices
» Value function: V/(s)
» Expected total rewards of the agent’s policy
» Quality function: Q(s,a)
» Expected total rewards of taking a specific action in a given state



Bellman's Equation

» Optimal state value function V*(s)

V*(s) = maxE[r | s, 4] +9> P(s'|s,a) V*(s')

S/

» Optimal state-action value function Q*(s, a)

Q*(s,a) = E[r|s,al +7)_P(s'|s,a) max Q" (s', d)

S/
where V*(s) = max, Q*(s, a)
m*(s) = argmax Q*(s, a)
a



Categorizing RL Agents



Categorizing RL Agents

/Value based
» No policy (implicit)
» Value function
Policy based
» Policy
» No value function
Actor critic
» Policy
\ » Value function

/Model based

» Transition and reward
model
Model free
» No transition model
(implicit)
» No reward model
(implicit)

\
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Categorizing RL Agents

/Value based
» No policy (implicit)
» Value function
Policy based
» Policy
» No value function
Actor critic
» Policy
\ » Value function

/I\/Iodel based

» Transition and reward
model

Model free
» No transition model
(implicit)
» No reward model
(implicit)
Imitation Learning
» No transition model
(implicit)

» Reward model implicit

\ through experts
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RL Algorithms

Dynamic Programming Backup

V(St) ¢ Er [Re1 + 7 V(Se41)]
s

Source: David Silver
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RL Algorithms
Monte Carlo Backup

V(St) « V(St) + o (G — V(St))

S

Source: David Silver
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RL Algorithms

Temporal Difference Backup

V(St) < V(St) + a(Resr + 7V(St41) — V(St))

Source: David Silver
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Toy Maze Example

3 r rfr |41
1w ] | |
1 2 3 4

Four actions:
> up (u),
> left (1),
> right (r),
» down (d)

Start state: (1,1)
Terminal states: (4,2), (4,3)
No discount: y=1

Reward is -0.04 for non-terminal states

Do not know the transition probabilities

What is the value V/(s) of being in state s

14



Toy Maze Example (No Learning, Noise 20%)

¢ GridworidDispay

VALUES AFTER 1000 ITERATIONS
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Takeaways



Takeaways

» “By three methods we may learn wisdom:

>
>
>

First, by reflection, which is reblest model-based RL;
Second, by imitation, which is easiest imitation learning; and
third by experience, which is the bitterest model free RL."

> RL agent types:

>

vvyVvyyVvyy

value-based,

policy-based,

value-policy-based (actor-critic),
model-based,

model-free

imitation learning
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