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Solving for state-value functions
in a system of linear equations



Value Iteration

▶ Idea: Optimize value function and then induce a policy

▶ Convergence properties of
▶ Policy evaluation
▶ Value iteration

Readings: Value Iteration
Sutton and Barto (2018, sections 4.1, 4.4)
Szepesvári (2022, sections 2.2, 2.3)
Puterman (2014, sections 6.1-6.3)
Sigaud and Buffet (2013, chapter 1)
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Value Iteration Algorithm

valueIteration(MDP)
V �

0 (s) maxa R(s; a) 8s

For t = 1 to h do
V �

t (s) maxa R(s; a) + 

P

S 0 Pr (s
0 j s; a)V �

t�1 (s
0) 8s

Return V �

Optimal policy ��

t = 0 : ��0(s) argmax
a

R(s; a) 8s

t > 0 : ��t (s) argmax
a

R(s; a) + 

P

s 0 Pr (s
0 j s; a)V �

t�1 (s
0) 8s

NB: t indicates the # of time steps to go (till end of process)
�� is non stationary (i.e., time dependent)
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Value Iteration Example

▶ Matrix form:

Ra : jS j � 1 column vector of rewards for a
V �

t : jS j � 1 column vector of state values
T a : jS j � jS j matrix of transition prob. for a

Two-state, two-action Markov Decision Process

s 01 s 02
T a1 = s1 0:3 0:7

s2 0:8 0:2

s 01 s 02
T a2 = s1 0:7 0:3

s2 0:2 0:8

Ra1 =
s1 0
s2 10

Ra2 =
s1 �5
s2 5
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Value Iteration Example

▶ Matrix form:

Ra : jS j � 1 column vector of rewards for a
V �

t : jS j � 1 column vector of state values
T a : jS j � jS j matrix of transition prob. for a

maxRa + 
T aV �

t�1

max

� 
0
10

!
+ 0:9

 
0:3 0:7
0:8 0:2

! 
V � (s1)
V � (s2)

!
;

 
�5
5

!
+ 0:9

 
0:7 0:3
0:2 0:8

! 
V � (s1)
V � (s2)

!�
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Value Iteration

▶ Matrix form:

Ra : jS j � 1 column vector of rewards for a
V �

t : jS j � 1 column vector of state values
T a : jS j � jS j matrix of transition prob. for a

valueIteration(MDP)
V �

0  maxa R
a

For T = 1 to h do
V �

t  maxa R
a + 
T aV �

t�1

Return V �
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Infinite Horizon

▶ Let h!1

▶ Then V �

h ! V �

1
and V �

h�1 ! V �

1

▶ Policy evaluation:

V �

1
(s) = R (s; �1(s)) + 


X
s 0

Pr
�
s 0 j s; �1(s)

�
V �

1

�
s 0
�
8s

▶ Bellman’s equation:

V �

1
(s) = max

a
R(s; a) + 


X
s 0

Pr
�
s 0 j s; a

�
V �

1

�
s 0
�
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Policy Evaluation

▶ Linear system of equations

V �

1
(s) = R (s; �1(s)) + 


X
s0

Pr
�
s 0 j s; �1(s)

�
V �

1

�
s 0
�
8s

▶ Matrix form:

R : jS j � 1 column vector of state rewards for �
V : jS j � 1 column vector of state values for �
T : jS j � jS j matrix of transition prob for �

(Non-optimal) policy � (s1) = a1;� (s2) = a2

T� =
s 01 s 02

s1 0:3 0:7
s2 0:2 0:8

R� =
s1 0
s2 5

9



Policy Evaluation

▶ Linear system of equations

V �

1
(s) = R (s; �1(s)) + 


X
s0

Pr
�
s 0 j s; �1(s)

�
V �

1

�
s 0
�
8s

▶ Matrix form:

R : jS j � 1 column vector of state rewards for �
V : jS j � 1 column vector of state values for �
T : jS j � jS j matrix of transition prob for �

(Non-optimal) policy � (s1) = a1;� (s2) = a2

V = R + 
TV
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Solving Linear Equations

▶ Linear system: V = R + 
TV

▶ Gaussian elimination: (I � 
T )V = R

▶ Compute inverse: V = (I � 
T )�1R
▶ Iterative methods

▶ Value iteration (a.k.a. Richardson iteration)
▶ Repeat V  R + 
TV
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With whatever estimate of the
value function we start,

...
we shrink the distance with the

discount factor



Contraction: Transform with H to Shrink the Maxnorm Distance

Vs2

Vs1

eV

V

k eV � V k1

H( eV )

H(V )

kH( eV )� H(V )k1
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Contraction

▶ Let H(V ) � R + 
TV be the policy evaluation operator

▶ Lemma 1: H is a contraction mapping.

kH(Ṽ )� H(V )k1 � 
kṼ � V k1

▶ Proof kH(Ṽ )� H(V )k1

= kR + 
TṼ � R � 
TV k1 (by definition)

= k
T (Ṽ � V )k1 (simplification)

� 
kTk1kṼ � V k1 (since kABk � kAkkBk)

= 
kṼ � V k1 (since maxs
P

s 0 T (s; s 0) = 1)

14



Contraction

▶ Let H(V ) � R + 
TV be the policy evaluation operator

▶ Lemma 1: H is a contraction mapping.
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Wherever we start, we contract to
the optimal value



Contraction: Whatever Initial Guess Gets the True Point

0

vs2

vs1

guess V

H(0)

H(V )

H2(0)

H2(V )

V �

H1(V )

H1(0)
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Convergence

▶ Theorem 2: Policy evaluation converges to V �

for any initial estimate V

lim
n!1

H(n)(V ) = V � 8V

▶ Proof
▶ By definition V � = H(1)(0), but policy evaluation computes

H(1)(V ) for any initial V

▶ By Lemma 1,



H(n)(V )� H(n)(Ṽ )





1

� 

nkV � Ṽ k1

▶ Hence, when n!1, then


H(n)(V )� H(n)(0)




1
! 0 and

H(1)(V ) = V � 8V
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When we stop early, how far are
we from the optimal value?



Approximate Policy Evaluation

▶ In practice, we can’t perform an infinite number of iterations

▶ Suppose that we perform value iteration for n steps and


H(n)(V )� H(n�1)(V )




1

= �;

how far is H(n)(V ) from V �?
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Contraction

0

vs2

vs1

�

H(0)

�� 


H(0)

�� 
2 H1(V )

H1(0)
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Approximate Policy Evaluation

▶ Theorem 3: If


H(n)(V )� H(n�1)(V )




1

� � then

V n � H(n)(V )



1

�
�

1� 


▶ Proof


V � � H(n)(V )




1

=


H(1)(V )� H(n)(V )




1

(by Theorem 2)

=







1X
t=1

H(t+n)(V )� H(t+n�1)(V )







1

�

1X
t=1



H(t+n)(V )� H(t+n�1)(V )



1

(kA+ Bk � kAk+ kBk)

=

1X
t=1



t
� =

�

1� 

(by Lemma 1)
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How to find the best policy?



Optimal Value Function

▶ Non-linear system of equations

V �

1
(s) = max

a
R(s; a) + 


X
s 0

Pr
�
s 0 j s; a

�
V �

1

�
s 0
�
8s

▶ Matrix form:
Ra : jS j � 1 column vector of rewards for a
V � : jS j � 1 column vector of optimal values
T a : jS j � jS j matrix of transition prob for a

V � = max
a

Ra + 
T aV �
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Contraction with max

▶ Even with maxa we get a contraction mapping

▶ Let H�(V ) � maxa R
a + 
T aV be the operator in value iteration

▶ Lemma 4: H� is a contraction mapping.


H�(Ṽ )� H�(V )




1

� 
kṼ � V k1

▶ Proof: without loss of generality,

▶ let H�(Ṽ )(s) � H�(V )(s) and

▶ let a�s = argmax R(s; a) + 

P

s0 Pr (s 0 j s; a)V (s 0)
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Contraction with max

▶ Proof continued:

▶ Then 0 � H�(Ṽ )(s)� H�(V )(s) (by assumption)

� R (s; a�s ) + 

P

s 0 Pr (s
0 j s; a�s ) Ṽ (s 0) (by definition)

�R (s; a�s )� 

P

s 0 Pr (s
0 j s; a�s )V (s 0)

= 

P

s 0 Pr (s
0 j s; a�s ) [Ṽ (s 0)� V (s 0)]

� 

P

s 0 Pr (s
0 j s; ã�s ) kṼ � V k1 (maxnorm upper bound)

= 
kṼ � V k1 (since
P

s 0 Pr (s
0 j s; a�s ) = 1)

▶ Repeat same argument for H�(V )(s) � H�(Ṽ )(s) and for each s
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Convergence with max

▶ Theorem 5: Value iteration converges to V � for
any initial estimate V

lim
n!1

H�(n)(V ) = V � 8V

▶ Proof
▶ By definition V � = H�(1)(0), but value iteration computes

H�(1)(V ) for some initial V

▶ By Lemma 4,



H�(n)(V )� H�(n)(Ṽ )





1

� 

nkV � Ṽ k1

▶ Hence, when n!1, then


H�(n)(V )� H�(n)(0)




1
! 0 and

H�(1)(V ) = V � 8V
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1

� 

nkV � Ṽ k1
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Value Iteration

▶ Even when horizon is infinite, perform finitely many iterations

▶ Stop when kVn � Vn�1k � �

valueIteration(MDP)
V �

0 (s) maxa R
a; n 0

Repeat
n n + 1
Vn  maxa R

a + 
T aVn�1

Until kVn � Vn�1k1 � �

Return Vn
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Induced Policy

▶ Since kVn � Vn�1k1 � �,
by Theorem 5: we know that kVn � V �k

1
� �

1�


▶ But, how good is the stationary policy �n(s)
extracted based on Vn?

▶ �n(s) = argmax
a

R(s; a) + 

P

s 0 Pr (s
0 j s; a)Vn (s

0)

▶ How far is V �n from V �?
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Induced Policy
▶ Theorem 6: kV �n � V �k

1
� 2�

1�


▶ Proof
kV �n � V �k

1
= kV �n � Vn + Vn � V �k

1

� kV �n � Vnk1 + kVn � V �k
1

(kA+ Bk � kAk+ kBk)

=



H�n(1) (Vn)� Vn





1

+



Vn � H�(1) (Vn)





1

� �

1�
 + �

1�
 (by Theorems 2 and 5)

= 2�
1�
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1
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Summary Value Iteration Algorithm

▶ Value iteration
▶ Simple dynamic programming algorithm

▶ Complexity: O
�
njAjjS j2

�
▶ Here n is the number of iterations,

▶ A number of actions,

▶ S number of states
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Takeaways



How Does the Value Iteration Algorithm Work?

▶ Repeatedly applies the Bellman optimality update to converge to
V �

▶ Approximate solutions in infinite-horizon settings:
Can stop early (threshold on update size)

▶ Policy error decreases each iteration
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