
RLearning:

Short guides to reinforcement learning

Unit 2-4: Value Iteration: Technicalities

Davud Rostam-Afschar (Uni Mannheim)

Solving for state-value functions
in a system of linear equations

Value Iteration

▶ Idea: Optimize value function and then induce a policy

▶ Convergence properties of
▶ Policy evaluation
▶ Value iteration

Readings: Value Iteration
Sutton and Barto (2018, sections 4.1, 4.4)
Szepesvári (2022, sections 2.2, 2.3)
Puterman (2014, sections 6.1-6.3)
Sigaud and Buffet (2013, chapter 1)

3

Value Iteration Algorithm

valueIteration(MDP)
V �

0 (s) maxa R(s; a) 8s

For t = 1 to h do
V �

t (s) maxa R(s; a) +

P

S 0 Pr (s
0 j s; a)V �

t�1 (s
0) 8s

Return V �

Optimal policy ��

t = 0 : ��0(s) argmax
a

R(s; a) 8s

t > 0 : ��t (s) argmax
a

R(s; a) +

P

s 0 Pr (s
0 j s; a)V �

t�1 (s
0) 8s

NB: t indicates the # of time steps to go (till end of process)
�� is non stationary (i.e., time dependent)

4

Value Iteration Algorithm

valueIteration(MDP)
V �

0 (s) maxa R(s; a) 8s

For t = 1 to h do
V �

t (s) maxa R(s; a) +

P

S 0 Pr (s
0 j s; a)V �

t�1 (s
0) 8s

Return V �

Optimal policy ��

t = 0 : ��0(s) argmax
a

R(s; a) 8s

t > 0 : ��t (s) argmax
a

R(s; a) +

P

s 0 Pr (s
0 j s; a)V �

t�1 (s
0) 8s

NB: t indicates the # of time steps to go (till end of process)
�� is non stationary (i.e., time dependent)

4

Value Iteration Algorithm

valueIteration(MDP)
V �

0 (s) maxa R(s; a) 8s

For t = 1 to h do
V �

t (s) maxa R(s; a) +

P

S 0 Pr (s
0 j s; a)V �

t�1 (s
0) 8s

Return V �

Optimal policy ��

t = 0 : ��0(s) argmax
a

R(s; a) 8s

t > 0 : ��t (s) argmax
a

R(s; a) +

P

s 0 Pr (s
0 j s; a)V �

t�1 (s
0) 8s

NB: t indicates the # of time steps to go (till end of process)
�� is non stationary (i.e., time dependent)

4

Value Iteration Algorithm

valueIteration(MDP)
V �

0 (s) maxa R(s; a) 8s

For t = 1 to h do
V �

t (s) maxa R(s; a) +

P

S 0 Pr (s
0 j s; a)V �

t�1 (s
0) 8s

Return V �

Optimal policy ��

t = 0 : ��0(s) argmax
a

R(s; a) 8s

t > 0 : ��t (s) argmax
a

R(s; a) +

P

s 0 Pr (s
0 j s; a)V �

t�1 (s
0) 8s

NB: t indicates the # of time steps to go (till end of process)
�� is non stationary (i.e., time dependent)

4

Value Iteration Example

▶ Matrix form:

Ra : jS j � 1 column vector of rewards for a
V �

t : jS j � 1 column vector of state values
T a : jS j � jS j matrix of transition prob. for a

Two-state, two-action Markov Decision Process

s 01 s 02
T a1 = s1 0:3 0:7

s2 0:8 0:2

s 01 s 02
T a2 = s1 0:7 0:3

s2 0:2 0:8

Ra1 =
s1 0
s2 10

Ra2 =
s1 �5
s2 5

5

Value Iteration Example

▶ Matrix form:

Ra : jS j � 1 column vector of rewards for a
V �

t : jS j � 1 column vector of state values
T a : jS j � jS j matrix of transition prob. for a

maxRa +
T aV �

t�1

max

�
0
10

!
+ 0:9

0:3 0:7
0:8 0:2

!
V � (s1)
V � (s2)

!
;

�5
5

!
+ 0:9

0:7 0:3
0:2 0:8

!
V � (s1)
V � (s2)

!�

6

Value Iteration

▶ Matrix form:

Ra : jS j � 1 column vector of rewards for a
V �

t : jS j � 1 column vector of state values
T a : jS j � jS j matrix of transition prob. for a

valueIteration(MDP)
V �

0 maxa R
a

For T = 1 to h do
V �

t maxa R
a +
T aV �

t�1

Return V �

7

Infinite Horizon

▶ Let h!1

▶ Then V �

h ! V �

1
and V �

h�1 ! V �

1

▶ Policy evaluation:

V �

1
(s) = R (s; �1(s)) +

X
s 0

Pr
�
s 0 j s; �1(s)

�
V �

1

�
s 0
�
8s

▶ Bellman’s equation:

V �

1
(s) = max

a
R(s; a) +

X
s 0

Pr
�
s 0 j s; a

�
V �

1

�
s 0
�

8

Policy Evaluation

▶ Linear system of equations

V �

1
(s) = R (s; �1(s)) +

X
s0

Pr
�
s 0 j s; �1(s)

�
V �

1

�
s 0
�
8s

▶ Matrix form:

R : jS j � 1 column vector of state rewards for �
V : jS j � 1 column vector of state values for �
T : jS j � jS j matrix of transition prob for �

(Non-optimal) policy � (s1) = a1;� (s2) = a2

T� =
s 01 s 02

s1 0:3 0:7
s2 0:2 0:8

R� =
s1 0
s2 5

9

Policy Evaluation

▶ Linear system of equations

V �

1
(s) = R (s; �1(s)) +

X
s0

Pr
�
s 0 j s; �1(s)

�
V �

1

�
s 0
�
8s

▶ Matrix form:

R : jS j � 1 column vector of state rewards for �
V : jS j � 1 column vector of state values for �
T : jS j � jS j matrix of transition prob for �

(Non-optimal) policy � (s1) = a1;� (s2) = a2

V = R +
TV

10

Solving Linear Equations

▶ Linear system: V = R +
TV

▶ Gaussian elimination: (I �
T)V = R

▶ Compute inverse: V = (I �
T)�1R
▶ Iterative methods

▶ Value iteration (a.k.a. Richardson iteration)
▶ Repeat V R +
TV

11

With whatever estimate of the
value function we start,

...
we shrink the distance with the

discount factor

Contraction: Transform with H to Shrink the Maxnorm Distance

Vs2

Vs1

eV

V

k eV � V k1

H(eV)

H(V)

kH(eV)� H(V)k1

13

Contraction

▶ Let H(V) � R +
TV be the policy evaluation operator

▶ Lemma 1: H is a contraction mapping.

kH(Ṽ)� H(V)k1 �
kṼ � V k1

▶ Proof kH(Ṽ)� H(V)k1

= kR +
TṼ � R �
TV k1 (by definition)

= k
T (Ṽ � V)k1 (simplification)

�
kTk1kṼ � V k1 (since kABk � kAkkBk)

=
kṼ � V k1 (since maxs
P

s 0 T (s; s 0) = 1)

14

Contraction

▶ Let H(V) � R +
TV be the policy evaluation operator

▶ Lemma 1: H is a contraction mapping.

kH(Ṽ)� H(V)k1 �
kṼ � V k1

▶ Proof kH(Ṽ)� H(V)k1

= kR +
TṼ � R �
TV k1 (by definition)

= k
T (Ṽ � V)k1 (simplification)

�
kTk1kṼ � V k1 (since kABk � kAkkBk)

=
kṼ � V k1 (since maxs
P

s 0 T (s; s 0) = 1)

14

Wherever we start, we contract to
the optimal value

Contraction: Whatever Initial Guess Gets the True Point

0

vs2

vs1

guess V

H(0)

H(V)

H2(0)

H2(V)

V �

H1(V)

H1(0)

16

Convergence

▶ Theorem 2: Policy evaluation converges to V �

for any initial estimate V

lim
n!1

H(n)(V) = V � 8V

▶ Proof
▶ By definition V � = H(1)(0), but policy evaluation computes

H(1)(V) for any initial V

▶ By Lemma 1,

H(n)(V)� H(n)(Ṽ)

1

�

nkV � Ṽ k1

▶ Hence, when n!1, then

H(n)(V)� H(n)(0)

1
! 0 and

H(1)(V) = V � 8V

17

Convergence

▶ Theorem 2: Policy evaluation converges to V �

for any initial estimate V

lim
n!1

H(n)(V) = V � 8V

▶ Proof
▶ By definition V � = H(1)(0), but policy evaluation computes

H(1)(V) for any initial V

▶ By Lemma 1,

H(n)(V)� H(n)(Ṽ)

1

�

nkV � Ṽ k1

▶ Hence, when n!1, then

H(n)(V)� H(n)(0)

1
! 0 and

H(1)(V) = V � 8V

17

When we stop early, how far are
we from the optimal value?

Approximate Policy Evaluation

▶ In practice, we can’t perform an infinite number of iterations

▶ Suppose that we perform value iteration for n steps and

H(n)(V)� H(n�1)(V)

1

= �;

how far is H(n)(V) from V �?

19

Contraction

0

vs2

vs1

�

H(0)

��

H(0)

��
2 H1(V)

H1(0)

20

Approximate Policy Evaluation

▶ Theorem 3: If

H(n)(V)� H(n�1)(V)

1

� � then

V n � H(n)(V)

1

�
�

1�

▶ Proof

V � � H(n)(V)

1

=

H(1)(V)� H(n)(V)

1

(by Theorem 2)

=

1X
t=1

H(t+n)(V)� H(t+n�1)(V)

1

�

1X
t=1

H(t+n)(V)� H(t+n�1)(V)

1

(kA+ Bk � kAk+ kBk)

=

1X
t=1

t
� =

�

1�

(by Lemma 1)

21

Approximate Policy Evaluation

▶ Theorem 3: If

H(n)(V)� H(n�1)(V)

1

� � then

V n � H(n)(V)

1

�
�

1�

▶ Proof

V � � H(n)(V)

1

=

H(1)(V)� H(n)(V)

1

(by Theorem 2)

=

1X
t=1

H(t+n)(V)� H(t+n�1)(V)

1

�

1X
t=1

H(t+n)(V)� H(t+n�1)(V)

1

(kA+ Bk � kAk+ kBk)

=

1X
t=1

t
� =

�

1�

(by Lemma 1)

21

How to find the best policy?

Optimal Value Function

▶ Non-linear system of equations

V �

1
(s) = max

a
R(s; a) +

X
s 0

Pr
�
s 0 j s; a

�
V �

1

�
s 0
�
8s

▶ Matrix form:
Ra : jS j � 1 column vector of rewards for a
V � : jS j � 1 column vector of optimal values
T a : jS j � jS j matrix of transition prob for a

V � = max
a

Ra +
T aV �

23

Contraction with max

▶ Even with maxa we get a contraction mapping

▶ Let H�(V) � maxa R
a +
T aV be the operator in value iteration

▶ Lemma 4: H� is a contraction mapping.

H�(Ṽ)� H�(V)

1

�
kṼ � V k1

▶ Proof: without loss of generality,

▶ let H�(Ṽ)(s) � H�(V)(s) and

▶ let a�s = argmax R(s; a) +

P

s0 Pr (s 0 j s; a)V (s 0)

24

Contraction with max

▶ Even with maxa we get a contraction mapping

▶ Let H�(V) � maxa R
a +
T aV be the operator in value iteration

▶ Lemma 4: H� is a contraction mapping.

H�(Ṽ)� H�(V)

1

�
kṼ � V k1

▶ Proof: without loss of generality,

▶ let H�(Ṽ)(s) � H�(V)(s) and

▶ let a�s = argmax R(s; a) +

P

s0 Pr (s 0 j s; a)V (s 0)

24

Contraction with max

▶ Proof continued:

▶ Then 0 � H�(Ṽ)(s)� H�(V)(s) (by assumption)

� R (s; a�s) +

P

s 0 Pr (s
0 j s; a�s) Ṽ (s 0) (by definition)

�R (s; a�s)�

P

s 0 Pr (s
0 j s; a�s)V (s 0)

=

P

s 0 Pr (s
0 j s; a�s) [Ṽ (s 0)� V (s 0)]

�

P

s 0 Pr (s
0 j s; ã�s) kṼ � V k1 (maxnorm upper bound)

=
kṼ � V k1 (since
P

s 0 Pr (s
0 j s; a�s) = 1)

▶ Repeat same argument for H�(V)(s) � H�(Ṽ)(s) and for each s

25

Convergence with max

▶ Theorem 5: Value iteration converges to V � for
any initial estimate V

lim
n!1

H�(n)(V) = V � 8V

▶ Proof
▶ By definition V � = H�(1)(0), but value iteration computes

H�(1)(V) for some initial V

▶ By Lemma 4,

H�(n)(V)� H�(n)(Ṽ)

1

�

nkV � Ṽ k1

▶ Hence, when n!1, then

H�(n)(V)� H�(n)(0)

1
! 0 and

H�(1)(V) = V � 8V

26

Convergence with max

▶ Theorem 5: Value iteration converges to V � for
any initial estimate V

lim
n!1

H�(n)(V) = V � 8V

▶ Proof
▶ By definition V � = H�(1)(0), but value iteration computes

H�(1)(V) for some initial V

▶ By Lemma 4,

H�(n)(V)� H�(n)(Ṽ)

1

�

nkV � Ṽ k1

▶ Hence, when n!1, then

H�(n)(V)� H�(n)(0)

1
! 0 and

H�(1)(V) = V � 8V

26

Value Iteration

▶ Even when horizon is infinite, perform finitely many iterations

▶ Stop when kVn � Vn�1k � �

valueIteration(MDP)
V �

0 (s) maxa R
a; n 0

Repeat
n n + 1
Vn maxa R

a +
T aVn�1

Until kVn � Vn�1k1 � �

Return Vn

27

Induced Policy

▶ Since kVn � Vn�1k1 � �,
by Theorem 5: we know that kVn � V �k

1
� �

1�

▶ But, how good is the stationary policy �n(s)
extracted based on Vn?

▶ �n(s) = argmax
a

R(s; a) +

P

s 0 Pr (s
0 j s; a)Vn (s

0)

▶ How far is V �n from V �?

28

Induced Policy
▶ Theorem 6: kV �n � V �k

1
� 2�

1�

▶ Proof
kV �n � V �k

1
= kV �n � Vn + Vn � V �k

1

� kV �n � Vnk1 + kVn � V �k
1

(kA+ Bk � kAk+ kBk)

=

H�n(1) (Vn)� Vn

1

+

Vn � H�(1) (Vn)

1

� �

1�
 + �

1�
 (by Theorems 2 and 5)

= 2�
1�

29

Induced Policy
▶ Theorem 6: kV �n � V �k

1
� 2�

1�

▶ Proof
kV �n � V �k

1
= kV �n � Vn + Vn � V �k

1

� kV �n � Vnk1 + kVn � V �k
1

(kA+ Bk � kAk+ kBk)

=

H�n(1) (Vn)� Vn

1

+

Vn � H�(1) (Vn)

1

� �

1�
 + �

1�
 (by Theorems 2 and 5)

= 2�
1�

29

Summary Value Iteration Algorithm

▶ Value iteration
▶ Simple dynamic programming algorithm

▶ Complexity: O
�
njAjjS j2

�
▶ Here n is the number of iterations,

▶ A number of actions,

▶ S number of states

30

References I

Puterman, M. L. (2014): Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons.

Sigaud, O., and O. Buffet (2013): Markov decision processes in artificial
intelligence. John Wiley & Sons.

Sutton, R. S., and A. G. Barto (2018): “Reinforcement learning: An
introduction,” A Bradford Book, Available at
http://incompleteideas.net/book/the-book-2nd.html.

Szepesvári, C. (2022): Algorithms for reinforcement learning. Springer
nature, Available at
https://sites.ualberta.ca/~szepesva/RLBook.html.

31

http://incompleteideas.net/book/the-book-2nd.html
https://sites.ualberta.ca/~szepesva/RLBook.html

Takeaways

How Does the Value Iteration Algorithm Work?

▶ Repeatedly applies the Bellman optimality update to converge to
V �

▶ Approximate solutions in infinite-horizon settings:
Can stop early (threshold on update size)

▶ Policy error decreases each iteration

33

	Value Iteration
	Shrinking the Distance
	Converging to Optimal Value
	Approximate Policy Evaluation
	Optimal Value Function
	References
	Takeaways

