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Get the best out of now +
what you expect to be best



Value Iteration

▶ Performs dynamic programming

▶ Optimizes decisions in reverse order

S0 S1 S2 S3 S4

a0 a1 a2 a3

r0 r1 r2 r3
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Value Iteration (?)

▶ Value when no time left:

V (sh) = maxah R (sh; ah)

▶ Value with one time step left:

V (sh�1) = maxah�1 R (sh�1; ah�1) + 

P

sh
P (sh j sh�1; ah�1)V (sh)

▶ Value with two time steps left:

V (sh�2) = maxah�2 R (sh�2; ah�2) + 


P
sh�1

P (sh j sh�2; ah�2)V (sh�1)

▶ Bellman’s equation:

V (st) = max
at

R (st ; at) + 


X

st+1

P (st+1 j st ; at)V (st+1)

a�t = argmax
at

R (st ; at) + 


X

st+1

P (st+1 j st ; at)V (st+1)
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Dynamic Programming

Dynamic Programming Backup
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Example: Invest or Save?



A Markov Decision Process
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You own a company
In every state you must choose between Investing or Saving.

 = 0:9
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Transition Model for Invest
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Reward Model for Invest
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Transition Model for Save
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Reward Model for Save
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Values and Policies for Each State

I

S

I

S

IS I

S

Poor &
Unknown

+0

Poor &
Famous
+0

Rich &
Unknown

+10

Rich &
Famous
+10

1
1=2

1

1=2

1=2

1=2
1=2 1=2

1=2

1
1=2

1=2

1=2

Vh(RF ) = max
action

fR(RF ; I );R(RF ;S)g = max
a

f10; 10g = 10

�h(RF ) = argmaxfR(RF ; I );R(RF ;S)g = fI ;Sg

Vh�1(RF ) = max
action

R(RF ; action ) + 


X

state h

P (sh j RF ; ah�1)V (sh) =

= max
action

f10 + 0:9(1 � 0); 10 + 0:9(0:5 � 10 + 0:5 � 10)g = max
a

f10; 19g = 19

�h�1(RF ) = fSg
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Value Iteration Converges

Vh(RF ) = max
action

fR(RF ; I );R(RF ;S)g = max
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Endgame Effects



Finite Horizon

▶ When h is finite,

▶ Non-stationary optimal policy

▶ Best action different at each time step

▶ Intuition: best action varies with the amount of time left
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Infinite Horizon

▶ When h is infinite,

▶ Stationary optimal policy

▶ Same best action at each time step

▶ Intuition: same (infinite) amount of time left at each time step,
hence same best action

▶ Problem: value iteration does an infinite number of iterations...
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Infinite Horizon

▶ Problem: value iteration does an infinite number of iterations...

▶ Assuming a discount factor 
, after n time steps, rewards are scaled
down by 
n

▶ For large enough n, rewards become insignificant since 
n
! 0

▶ Solution:
▶ pick large enough n
▶ run value iteration for n steps
▶ Execute policy found at the nth iteration
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Takeaways



How to Get The Best Now And in The Future?

▶ Bellman equation relates immediate rewards to future values

▶ Value iteration solves for optimal policies by dynamic programming

▶ Finite horizon problems lead to non-stationary policies

▶ Infinite horizon problems yield stationary policies, stabilized with
discounting
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