RLearning:

Short guides to reinforcement learning

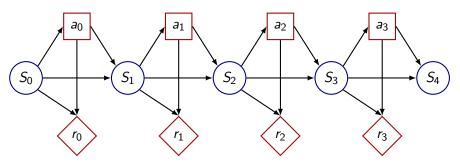
Unit 2-3: Intro to Value Iteration with Bellman Equation

Davud Rostam-Afschar (Uni Mannheim)

Get the best out of now + what you expect to be best

Value Iteration

- ► Performs dynamic programming
- ▶ Optimizes decisions in reverse order



► Value when no time left:

$$V\left(s_{h}\right)=\max_{a_{h}}R\left(s_{h},a_{h}\right)$$

► Value when no time left:

$$V\left(s_{h}\right)=\mathsf{max}_{a_{h}}\,R\left(s_{h},\,a_{h}\right)$$

► Value with one time step left:

$$V\left(s_{h-1}
ight) = \max_{a_{h-1}} R\left(s_{h-1}, a_{h-1}
ight) + \gamma \sum_{s_h} \mathbb{P}\left(s_h \mid s_{h-1}, a_{h-1}
ight) V\left(s_h
ight)$$

► Value when no time left:

$$V\left(s_{h}\right)=\mathsf{max}_{a_{h}}\,R\left(s_{h},\,a_{h}\right)$$

► Value with one time step left:

$$V(s_{h-1}) = \max_{a_{h-1}} R(s_{h-1}, a_{h-1}) + \gamma \sum_{s_h} \mathbb{P}(s_h \mid s_{h-1}, a_{h-1}) V(s_h)$$

► Value with two time steps left:

$$V\left(s_{h-2}
ight) = \max_{a_{h-2}} R\left(s_{h-2}, a_{h-2}
ight) + \gamma \sum_{s_{h-1}} \mathbb{P}\left(s_h \mid s_{h-2}, a_{h-2}
ight) V\left(s_{h-1}
ight)$$

► Value when no time left:

$$V\left(s_{h}\right)=\mathsf{max}_{a_{h}}\,R\left(s_{h},\,a_{h}\right)$$

► Value with one time step left:

$$V\left(s_{h-1}
ight) = \max_{a_{h-1}} R\left(s_{h-1}, a_{h-1}
ight) + \gamma \sum_{s_h} \mathbb{P}\left(s_h \mid s_{h-1}, a_{h-1}\right) V\left(s_h
ight)$$

► Value with two time steps left:

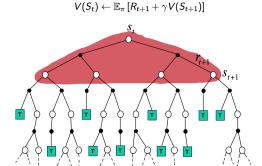
$$V\left(s_{h-2}\right) = \max_{a_{h-2}} R\left(s_{h-2}, a_{h-2}\right) + \gamma \sum_{s_{h-1}} \mathbb{P}\left(s_{h} \mid s_{h-2}, a_{h-2}\right) V\left(s_{h-1}\right)$$

► Bellman's equation:

$$egin{aligned} V\left(s_{t}
ight) &= \max_{a_{t}} R\left(s_{t}, a_{t}
ight) + \gamma \sum_{s_{t+1}} \mathbb{P}\left(s_{t+1} \mid s_{t}, a_{t}
ight) V\left(s_{t+1}
ight) \ a_{t}^{*} &= \operatorname*{argmax} R\left(s_{t}, a_{t}
ight) + \gamma \sum_{s_{t+1}} \mathbb{P}\left(s_{t+1} \mid s_{t}, a_{t}
ight) V\left(s_{t+1}
ight) \end{aligned}$$

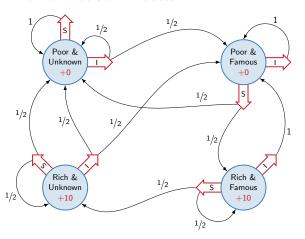
Dynamic Programming

Dynamic Programming Backup



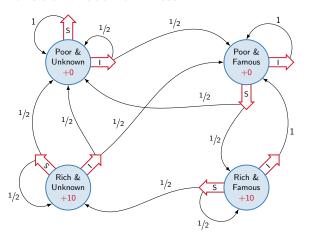
Example: Invest or Save?

A Markov Decision Process



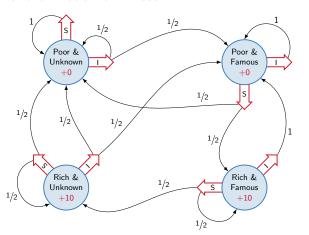
You own a company In every state you must choose between Investing or ${\bf S} {\rm aving}.$ $\gamma=0.9$

Transition Model for Invest



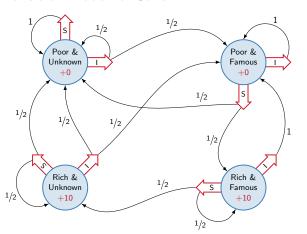
Transition Probability Function for Action Invest							
s		Marginal Prob					
	Poor & Unknown	Poor & Famous	Rich & Unknown	Rich & Famous	Warginai Prob		
Poor & Unknown	0.50	0.50	0.00	0.00	1.00		
Poor & Famous	0.00	1.00	0.00	0.00	1.00		
Rich & Unknown	0.50	0.50	0.00	0.00	1.00		
Rich & Famous	0.00	1.00	0.00	0.00	1.00		

Reward Model for Invest



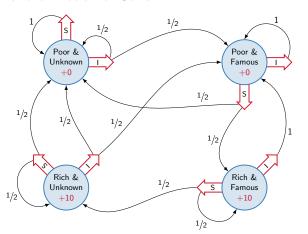
Reward Function for Action Invest							
s	S'						
	Poor & Unknown	Poor & Famous	Rich & Unknown	Rich & Famous			
Poor & Unknown	0	0	0	0			
Poor & Famous	0	0	0	0			
Rich & Unknown	10	10	10	10			
Rich & Famous	10	10	10	10			

Transition Model for Save



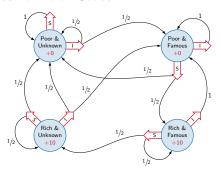
Transition Probability Function for Action Save							
s		Marginal Drob					
	Poor & Unknown	Poor & Famous	Rich & Unknown	Rich & Famous	Marginal Prob		
Poor & Unknown	1.00	0.00	0.00	0.00	1.00		
Poor & Famous	0.50	0.00	0.00	0.50	1.00		
Rich & Unknown	0.50	0.00	0.50	0.00	1.00		
Rich & Famous	0.00	0.00	0.50	0.50	1.00		

Reward Model for Save



Reward Function for Action Save							
s	S'						
	Poor & Unknown	Poor & Famous	Rich & Unknown	Rich & Famous			
Poor & Unknown	0	0	0	0			
Poor & Famous	0	0	0	0			
Rich & Unknown	10	10	10	10			
Rich & Famous	10	10	10	10			
	10 10			10 10			

Values and Policies for Each State



$$V_h(RF) = \max_{a \in tion} \{R(RF, I), R(RF, S)\} = \max_{a} \{10, 10\} = 10$$

 $\pi_h(RF) = \arg\max_{a} \{R(RF, I), R(RF, S)\} = \{I, S\}$

$$V_{h-1}(RF) = \max_{ ext{action}} R(RF, ext{ action }) + \gamma \sum_{ ext{state }_h} \mathbb{P}\left(s_h \mid RF, a_{h-1}\right) V\left(s_h\right) = \\ = \max_{ ext{action}} \{10 + 0.9(1*0), 10 + 0.9(0.5*10 + 0.5*10)\} = \max_{ ext{a}} \{10, 19\} = 19 \\ \pi_{h-1}(RF) = \{S\}$$

Values and Policies for Each State

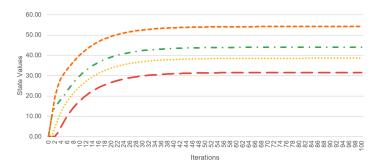
$$V_h(RF) = \max_{\text{action}} \{R(RF, I), R(RF, S)\} = \max_{a} \{10, 10\} = 10$$
 $\pi_h(RF) = \operatorname{argmax} \{R(RF, I), R(RF, S)\} = \{I, S\}$
 $V_{h-1}(RF) = \max_{\text{action}} R(RF, \text{ action }) + \gamma \sum_{\text{state } h} \mathbb{P}\left(s_h \mid RF, a_{h-1}\right) V\left(s_h\right) =$
 $= \max_{\text{action}} \{10 + 0.9(1*0), 10 + 0.9(0.5*10 + 0.5*10)\} = \max_{a} \{10, 19\} = 19$
 $\pi_{h-1}(RF) = \{S\}$

	Values				Policies			
Iteration	Poor & Unknown	Poor & Famous	Rich & Unknown	Rich & Famous	Poor & Unknown	Poor & Famous	Rich & Unknown	Rich & Famous
	0.00	0.00	0.00	0.00				
	0.00	0.00	10.00	10.00	Invest or Save	Invest or Save	Invest or Save	Invest or Save
	0.00	4.50	14.50	19.00	Invest or Save	Save	Save	Save
	2.03	8.55	16.53	25.08	Invest	Save	Save	Save
	4.76	12.20	18.35	28.72	Invest	Save	Save	Save
	7.63	15.07	20.40	31.18	Invest	Save	Save	Save
	10.21	17.46	22.61	33.21	Invest	Save	Save	Save
	12.45	19.54	24.77	35.12	Invest	Save	Save	Save
	14.40	21.41	26.75	36.95	Invest	Save	Save	Save
	16.11	23.11	28.52	38.67	Invest	Save	Save	Save
- 1	17.65	24.65	30.08	40.23	Invest	Save	Save	Save
1	19.03	26.05	31.48	41.64	Invest	Save	Save	Save
1:	20.29	27.30	32.73	42.90	Invest	Save	Save	Save
1:	21.42	28.44	33.86	44.04	Invest	Save	Save	Save
1-	22.43	29.45	34.87	45.05	Invest	Save	Save	Save
1	23.35	30.37	35.79	45.97	Invest	Save	Save	Save
10	24.17	31.19	36.61	46.79	Invest	Save	Save	Save
1	24.91	31.93	37.35	47.53	Invest	Save	Save	Save
1	25.58	32.60	38.02	48.20	Invest	Save	Save	Save
11			38.62	48.80	Invest	Save	Save	Save
2	26.72	33.74	39.16	49.34	Invest	Save	Save	Save

Value Iteration Converges

Poor & Unknown

$$\begin{split} V_h(RF) &= \max_{\text{action}} \{R(RF,I), R(RF,S)\} = \max_{a} \{10,10\} = 10 \\ \pi_h(RF) &= \text{argmax} \{R(RF,I), R(RF,S)\} = \{I,S\} \\ V_{h-1}(RF) &= \max_{\text{action}} R(RF, \text{ action }) + \gamma \sum_{\text{state }_h} \mathbb{P}\left(s_h \mid RF, a_{h-1}\right) V\left(s_h\right) = \\ &= \max_{\text{action}} \{10 + 0.9(1*0), 10 + 0.9(0.5*10 + 0.5*10)\} = \max_{a} \{10, 19\} = 19 \\ \pi_{h-1}(RF) &= \{S\} \end{split}$$



Poor & Famous

Endgame Effects

Finite Horizon

- ▶ When *h* is finite,
- ► Non-stationary optimal policy
- ▶ Best action different at each time step
- ▶ Intuition: best action varies with the amount of time left

Infinite Horizon

- ▶ When *h* is infinite,
- Stationary optimal policy
- Same best action at each time step
- ► Intuition: same (infinite) amount of time left at each time step, hence same best action
- ▶ Problem: value iteration does an infinite number of iterations...

Infinite Horizon

- ▶ Problem: value iteration does an infinite number of iterations...
- Assuming a discount factor γ , after n time steps, rewards are scaled down by γ^n
- ► For large enough n, rewards become insignificant since $\gamma^n \to 0$
- Solution:
 - ▶ pick large enough n
 - run value iteration for *n* steps
 - ightharpoonup Execute policy found at the n^{th} iteration

References I

Bellman, R. (1957): Dynamic Programming. Princeton University Press.

Takeaways

How to Get The Best Now And in The Future?

- ▶ Bellman equation relates immediate rewards to future values
- Value iteration solves for optimal policies by dynamic programming
- ► Finite horizon problems lead to non-stationary policies
- ► Infinite horizon problems yield stationary policies, stabilized with discounting