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How to predict transitions?



Markov Chains



Unrolling the Problem

Agent
state reward action
Si Re At
:: Rty1
i St+1 | Environment |
1
next step

Goal: Learn to choose actions that maximize rewards



Unrolling the Problem

» Modeling environment dynamics
» Unrolling the control loop leads to a sequence of states, actions and
rewards:
S0, 40, fo, S1, 41, I, S2, a2, 2, - - -
» This sequence forms a stochastic process (due to some uncertainty
in the dynamics of the process)



Common Properties

» Processes are rarely arbitrary
» They often exhibit some structure

» Laws of the process do not change
» Short history sufficient to predict future
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Common Properties

» Processes are rarely arbitrary
» They often exhibit some structure
» Laws of the process do not change
» Short history sufficient to predict future
» Example: weather prediction
P> Same model can be used everyday to predict weather
P> Weather measurements of past few days sufficient to predict weather
> Example: text prediction

» Same model can be used in every conversation to predict next
utterance
P letter sequences of past texts sufficient to predict new sentences



Markovian and Stationary
Processes



Stochastic Process

» Consider the sequence of states only
» Definition

> Set of States: S
> Stochastic dynamics: P(s¢|st—1, ..., 50)

oo



Stochastic Process

» Problem:
» Infinitely large conditional distributions
» Solutions:

» Stationary process:
Dynamics do not change over time

> Markov assumption:
Current state depends only on a finite history of past states

» ?. Section 15.1



K-Order Markov Process

» Assumption: last k states sufficient
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K-Order Markov Process

» Assumption: last k states sufficient
» First-order Markov Process
> ]P St|5t 1y--- ]P)(St|5t ]_
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K-Order Markov Process

» Assumption: last k states sufficient
» First-order Markov Process
> P 5t|5t 1y--- 5t|5t 1

O~ E—@

» Second-order Markov Process

> P(st|St—1,.--,5) = P(St|st—1,5¢—2)
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Markov Process

» Commonly, a Markov Process refers to a
» First-order process

P (st | St—1,St—2,---,%) = P (st | s—1) Vt
» Stationary process
P(St | stf]_) == P(Stl | Stlfl)vtl

» Advantage:
can specify the entire process with a single concise conditional
distribution

P (s s)
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Examples

» Marrying decision of young
women
> States: relationship history
» Dynamics: age

Precicted Probabilty At Age 20+ k

Probability of Young Women born 1950 of Being Never Married
Us National Longitudinal Survey (1968-1988)
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Examples

» Marrying decision of young
women
> States: relationship history
» Dynamics: age

» Robotic control
> States: (x,y,z,0)
coordinates of joints
» Dynamics: constant motion

Precicted Probabilty At Age 20+ k

Probability of Young Women born 1950 of Being Never Married
Us National Longitudinal Survey (1968-1988)

1
s

s

7

6

s

4

3

2

1 I
o

al M heration s Prediction

B steady suate

13



Examples

» Marrying decision of young
women
> States: relationship history
» Dynamics: age

» Robotic control
> States: (x,y,z,0)
coordinates of joints
» Dynamics: constant motion

P Inventory management
> States: inventory level

» Dynamics: constant

(stochastic) demand

Precicted Probabilty At Age 20+ k

Probability of Young Women born 1950 of Being Never Married
Us National Longitudinal Survey (1968-1988)
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Inference in Markov Processes

» Common task is prediction: P (sey« | s¢)

» Computation:

k

P 5t+k | St Zst+k -+ St+k—1 HP(SH-:‘ | 5t+i—1)
i=1

» Discrete states (matrix operations):
» Let T be a |S| x |S| matrix representing P (se4« | 5t)

» Then P(seyk | 5c) = TX

> Complexity: O (k|S|?)
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Example: Marrying as 2-State Markov Process

Setup: Initial distribution p; = [ 0.5never married 0-5married |
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Example: Marrying as 2-State Markov Process
Setup: Initial distribution p; = [ 0.5never married 0-Smarried ]
| never married married

T = never married 0.5 0.5
married 0 1

15



Example: Marrying as 2-State Markov Process

Setup: Initial distribution p; = [ 0.5never married 0-Smarried ]

T = never married 0.5 0.5

| never married married
- T?= (
married 0 1

0.25 0.75
0 1

15



Example: Marrying as 2-State Markov Process

Setup: Initial distribution p; = [0.5,18\,er married 0.5ma,ried]

| never married married
T = never married 0.5 0.5 - T?= (
married 0 1

Predicted Distributions:
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0 1
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Example: Marrying as 2-State Markov Process

Setup: Initial distribution p; = [0.5,18\,er married 0.5ma,ried]

| never married married
T = never married 0.5 0.5 - T?= (
married 0 1

Predicted Distributions:

Year k Peik = pe TX
1 [0.250000 0.750000]

0.25 0.75
0 1
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Example: Marrying as 2-State Markov Process

Setup: Initial distribution p; = [0.5“8\,er married 0.5ma,ried]

| never married married
T = never married 0.5 0.5 - T?= (
married 0 1

Predicted Distributions:

Year k  peok=pe TF

1 [0.250000 0.750000]
2 [0.125000 0.875000]

0.25 0.75
0 1

15



Example: Marrying as 2-State Markov Process

Setup: Initial distribution p; = [0.5never married 0.5ma,ried]

| never married married
T = never married 0.5 0.5 - T?= (
married 0 1

Predicted Distributions:

Year k  peok=pe TF

1 [0.250000 0.750000]
2 [0.125000 0.875000]
3 [0.062500 0.937500]

0.25 0.75
0 1
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Example: Marrying as 2-State Markov Process

Setup: Initial distribution p; = [ 0.5never married 0-Bmarried |

| never married married
T = never married 0.5 0.5 - T?= (0'25 0'75) ) e
) 0 1
married 0 1

Predicted Distributions:

Year k  perk=pe TF
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Example: Marrying as 2-State Markov Process

Setup: Initial distribution p; = [ 0.5never married 0-Bmarried |

| never married married
T = never married 0.5 0.5 - T?= (0'25 0'75) ) e
) 0 1
married 0 1

Predicted Distributions:

Year k  perk=pe TF

1 [0.250000 0.750000]
[0.125000 0.875000]
[0.062500 0.937500]
[0.031250 0.968750]
[0.015625 0.984375]

o ON

Long Run:

7= lim pyye =[0 1] (everyone eventually marries)
k—o00



How Quickly Get Young Women Married?

Probability of Young Women born 1950 of Being Never Married
US National Longitudinal Survey (1968-1988)
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Predicted Probability At Age 20 +k
w
1

1 =married at some point; 2 = never married

[ Inital M lteration 5 Prediction [ Steady State

xtsteadystate nevmar if birth_yr ==50, tw 3dists ini ss pred twowayopt(.)


https://rostam-afschar.de/xtsteadystate/xtsteadystate.htm

Non-Markovian and/or Non-Stationary Processes

» What if the process is not Markovian and/or not stationary?

» Solution: add new state components until dynamics are Markovian
and stationary
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Non-Markovian and/or Non-Stationary Processes

» What if the process is not Markovian and/or not stationary?

» Solution: add new state components until dynamics are Markovian
and stationary

» Marrying: probability of marrying may depend on: How long a

woman has been single, her past relationship history, norms in 1970
vs. 1980

» Add time since last relationship, number of prior marriages, cohort, .
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Non-Markovian and/or Non-Stationary Processes

» What if the process is not Markovian and/or not stationary?

» Solution: add new state components until dynamics are Markovian
and stationary

» Marrying: probability of marrying may depend on: How long a

woman has been single, her past relationship history, norms in 1970
vs. 1980

» Add time since last relationship, number of prior marriages, cohort, ..
» Where do we stop?
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Markovian Stationary Process

» Problem: adding components to the state description to force a
process to be Markovian and stationary may significantly increase
computational complexity

» Solution: try to find the smallest state description that is
self-sufficient (i.e., Markovian and stationary)

18



Decision Making

» Predictions by themselves are useless
» They are only useful when they will influence future decisions
» Hence the ultimate task is decision making

» How can we influence the process to visit desirable states?
» Model: Markov Decision Process
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Takeaways



How Can we Use Markov Processes to Predict Future States?

vy

Model sequences of states with probabilistic transitions
First-order Markov and stationarity assumptions simplify prediction

Adding state components can restore Markovian/stationary
properties—at a computational cost

Prediction relies on transition matrices

Real goal: use predictions for decision-making

— Markov Decision Processes
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Appendix



Prediction and Steady State via Eigendecomposition
Objective: Predict future state distributions P(s¢;« | s¢) and compute

the steady-state distribution using eigendecomposition

Inputs:
» Initial distribution: p;
» Transition matrix: T where Tjj = P(sp11 = | st = 1)
» Horizon: k (number of steps ahead)

Procedure:
1. Eigendecompose: T = UAU™!
2. Compute predicted distribution:

perk = T'pe = UNU™*p,
3. Steady state distribution:

w™= lim prik
k— o0
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