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How to predict transitions?



Markov Chains



Unrolling the Problem

Agent

Environment

state
St

reward
Rt

action
At

St+1

Rt+1

next step

Goal: Learn to choose actions that maximize rewards
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Unrolling the Problem

▶ Modeling environment dynamics

▶ Unrolling the control loop leads to a sequence of states, actions and
rewards:

s0; a0; r0; s1; a1; r1; s2; a2; r2; : : :

▶ This sequence forms a stochastic process (due to some uncertainty
in the dynamics of the process)
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Common Properties

▶ Processes are rarely arbitrary
▶ They often exhibit some structure

▶ Laws of the process do not change
▶ Short history sufficient to predict future

▶ Example: weather prediction
▶ Same model can be used everyday to predict weather
▶ Weather measurements of past few days sufficient to predict weather

▶ Example: text prediction
▶ Same model can be used in every conversation to predict next

utterance
▶ letter sequences of past texts sufficient to predict new sentences
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Markovian and Stationary
Processes



Stochastic Process

▶ Consider the sequence of states only
▶ Definition

▶ Set of States: S
▶ Stochastic dynamics: P(st jst�1; : : : ; s0)

S0 S1 S2 S3 S4
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Stochastic Process

▶ Problem:
▶ Infinitely large conditional distributions

▶ Solutions:
▶ Stationary process:

Dynamics do not change over time

▶ Markov assumption:
Current state depends only on a finite history of past states

▶ ?, Section 15.1
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K-Order Markov Process

▶ Assumption: last k states sufficient

▶ First-order Markov Process
▶ P(st jst�1; : : : ; s0) = P(st jst�1)

S0 S1 S2 S3 S4

▶ Second-order Markov Process
▶ P(st jst�1; : : : ; s0) = P(st jst�1; st�2)

S0 S1 S2 S3 S4
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Markov Process

▶ Commonly, a Markov Process refers to a
▶ First-order process

P (st j st�1; st�2; : : : ; s0) = P (st j st�1) 8t

▶ Stationary process

P (st j st�1) = P (st0 j st0�1) 8t
0

▶ Advantage:
can specify the entire process with a single concise conditional
distribution

P
�
s 0 j s

�
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Examples



Examples

▶ Marrying decision of young
women
▶ States: relationship history
▶ Dynamics: age

▶ Robotic control
▶ States: hx ; y ; z ; �i

coordinates of joints
▶ Dynamics: constant motion

▶ Inventory management
▶ States: inventory level
▶ Dynamics: constant

(stochastic) demand
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Inference in Markov Processes

▶ Common task is prediction: P (st+k j st)

▶ Computation:

P (st+k j st) =
X

st+k : : : st+k�1

kY
i=1

P (st+i j st+i�1)

▶ Discrete states (matrix operations):
▶ Let T be a jS j � jS j matrix representing P (st+k j st)

▶ Then P (st+k j st) = T k

▶ Complexity: O
�
k jS j3

�
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Example: Marrying as 2-State Markov Process

Setup: Initial distribution pt =
�
0:5never married 0:5married

�

T =
never married married

never married 0:5 0:5
married 0 1

! T 2 =

�
0:25 0:75
0 1

�
; :::

Predicted Distributions:

Year k pt+k = pt T
k

1 [ 0:250000 0:750000 ]
2 [ 0:125000 0:875000 ]
3 [ 0:062500 0:937500 ]
4 [ 0:031250 0:968750 ]
5 [ 0:015625 0:984375 ]

Long Run:

π = lim
k!1

pt+k = [ 0 1 ] (everyone eventually marries)
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How Quickly Get Young Women Married?

xtsteadystate nev mar if birth yr ==50, tw 3dists ini ss pred twowayopt(.)
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https://rostam-afschar.de/xtsteadystate/xtsteadystate.htm


Non-Markovian and/or Non-Stationary Processes

▶ What if the process is not Markovian and/or not stationary?
▶ Solution: add new state components until dynamics are Markovian

and stationary

▶ Marrying: probability of marrying may depend on: How long a
woman has been single, her past relationship history, norms in 1970
vs. 1980

▶ Add time since last relationship, number of prior marriages, cohort, ...
▶ Where do we stop?
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Markovian Stationary Process

▶ Problem: adding components to the state description to force a
process to be Markovian and stationary may significantly increase
computational complexity

▶ Solution: try to find the smallest state description that is
self-sufficient (i.e., Markovian and stationary)

18



Decision Making

▶ Predictions by themselves are useless

▶ They are only useful when they will influence future decisions

▶ Hence the ultimate task is decision making

▶ How can we influence the process to visit desirable states?
▶ Model: Markov Decision Process
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Takeaways



How Can we Use Markov Processes to Predict Future States?

▶ Model sequences of states with probabilistic transitions

▶ First-order Markov and stationarity assumptions simplify prediction

▶ Adding state components can restore Markovian/stationary
properties—at a computational cost

▶ Prediction relies on transition matrices

▶ Real goal: use predictions for decision-making

! Markov Decision Processes
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Appendix



Prediction and Steady State via Eigendecomposition

Objective: Predict future state distributions P(st+k j st) and compute
the steady-state distribution using eigendecomposition

Inputs:
▶ Initial distribution: pt
▶ Transition matrix: T where Tij = P(st+1 = j j st = i)
▶ Horizon: k (number of steps ahead)

Procedure:

1. Eigendecompose: T = UΛU�1

2. Compute predicted distribution:

pt+k = T kpt = UΛkU�1pt

3. Steady state distribution:

π = lim
k!1

pt+k
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