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How to update your priors about
rewards?



Thompson Sampling

▶ Notation:
▶ r at = rt jAt = a random variable for a’s rewards
▶ R(a) = q(a) = E [r at ] unknown average reward

▶ Idea:
▶ Sample several potential average rewards:

R1(a); : : : ;Rd(a) � P (R(a) j r a1 ; : : : ; r
a
t ) for each a

▶ Sample empirical average

R̂(a) =
1

d

dX
i=1

Ri (a)

▶ Execute a
argmax

R̂(a)

▶ Coin example
▶ P (R(a) j r a1 ; : : : ; r

a
t ) = Beta (�a;�a; �a)

where �a � 1 = #heads and �a � 1 = # tails
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Bayesian Learning



Bayesian Learning

▶ Notation:
▶ P (r a; �): unknown distribution (parameterized by �)

▶ Idea:
▶ Express uncertainty about � by a prior P(�)
▶ Compute posterior P (� j r a1 ; r

a
2 ; : : : ; r

a
t ) based on

▶ Samples r a1 ; r
a
2 ; : : : ; r

a
t observed for a so far

▶ Bayes theorem:

P (� j ra1 ; r
a
2 ; : : : ; r

a
t ) / P (�)P (ra1 ; r

a
2 ; : : : ; r

a
t j �)
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Distributional Information

▶ Posterior over � allows us to estimate
▶ Distribution over next reward r a

P (r a j r a1 ; r
a
2 ; : : : ; r

a
t ) =

Z
�

P (r a; �)P (� j r a1 ; r
a
2 ; : : : ; r

a
t ) d�

▶ Distribution over R(a) when � includes the mean

P (R(a) j r a1 ; r
a
2 ; : : : ; r

a
t ) = P (� j r a1 ; r

a
2 ; : : : ; r

a
t ) if � = R(a)

▶ To guide exploration:
▶ UCB: P (R(a) > bound (r a1 ; r

a
2 ; : : : ; r

a
t )) � p

▶ Bayesian techniques: P (R(a) j r a1 ; r
a
2 ; : : : ; r

a
t )
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Coin Example

▶ Consider two biased coins C1 and C2

R (C1) = P (C1 = head)

R (C2) = P (C2 = head)

▶ Problem:
▶ Maximize # of heads in d flips
▶ Which coin should we choose for each flip?
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Bernoulli Variables

▶ r c1 ; r c2 are Bernoulli variables with domain f0; 1g

▶ Bernoulli dist. are parameterized by their mean

i.e. P
�
rC1 ; �1

�
= �1 = R (C1)

P
�
rC2 ; �2

�
= �2 = R (C2)
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Beta Distribution

▶ Let the prior P(�) be a Beta distribution
Beta(�;�; �) / ���1(1� �)��1

▶ �� 1: # of heads

▶ � � 1: # of tails

▶ E[�] = �=(�+ �)
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Belief Update

▶ Prior: P(�) = Beta(�;�; �) / ���1(1� �)��1

▶ Posterior after coin flip:

P(� j head) / P(�) P(head j �)
/ ���1(1� �)��1 �

= �(�+1)�1(1� �)��1

/ Beta(�;�+ 1; �)

P(� j tail) / P(�) P(tail j �)
/ ���1(1� �)��1 (1� �)

= ���1(1� �)(�+1)�1

/ Beta(�;�; � + 1)
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Thompson Sampling Algorithm: Bernoulli Rewards

ThompsonSampling (T )
V  0
For t = 1 to T

Sample R1(a); : : : ;Rd(a) � P(R(a)) 8a
R̂(a) 1

d

Pd
i=1 Ri (a) 8a

a�  a
argmax

R̂(a)

Execute a� and receive r
V  V + r
Update P (R (a�)) based on r

Return V
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Exploration vs Exploitation



?? Sampling

▶ Beta-Bernoulli Thompson sampling
▶ Models uncertainty about the shape of the distribution and the

expected outcome R explicitly Click to watch!
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https://youtu.be/Z8s7oHXEEA4?si=rOTC9CSQTMX7bwBh


Comparison

Thompson Sampling

▶ Samples
rai � P (ra; �)
Ri (a) � P (Ri (a) j r

a
1 : : : rat )

▶ Empirical mean
R̂(a) = 1

d

Pd
i=1 Ri (a)

▶ Action Selection
a� = argmax

a
R̂(a)

▶ Some exploration

Greedy Strategy

▶ Samples
rai � P (ra; �)

▶ Empirical mean
R̃(a) = 1

t

Pt
i=1 r

a
i

▶ Action Selection
a� = argmax

a
R̃(a)

▶ No exploration

(?)

14



Sample Size

▶ In Thompson sampling, amount of data t and sample size d
regulate amount of exploration

▶ As t and d increase, R̂(a) becomes less stochastic, which reduces
exploration
▶ As t ";P (R(a) j r a1 ; : : : ; r

a
t ) becomes more peaked

▶ As d "; R̂(a) approaches E [R(a) j r a1 ; : : : ; r
a
t ]

▶ The stochasticity of R̂(a) ensures that all actions are chosen with
some probability
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Analysis

▶ Thompson sampling converges to best arm

▶ Theory:
▶ Expected cumulative regret: O(logT )
▶ On par with UCB and "-greedy

▶ Practice:
▶ Sample size d often set to 1
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Takeaways



What is Thompson Sampling?

▶ Models uncertainty about expected rewards using probability
distributions

▶ Samples from posterior of each arm’s reward distribution

▶ Selects the arm with the highest sampled value

▶ Posterior is updated after each observation

▶ Achieves log regret

▶ Applied at, e.g., Google, Amazon, Facebook, Salesforce, and Netflix

(e.g., ??????)
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