RLearning:

Short guides to reinforcement learning

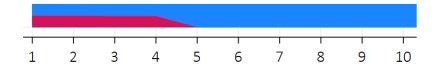
Unit 1-2: Greedy, ε -greedy, decaying ε -greedy

Davud Rostam-Afschar (Uni Mannheim)

How much to learn about the average return?

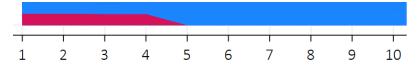
ε -First + Greedy Policy

ε -First + Greedy Policy



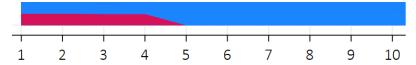
- ► Epsilon-first is widely known as A/B testing
- ► Often applied to two-armed bandits

Fixed Exploration Period + Greedy



1. Allocate a fixed time period to exploration, during which you try all bandits uniformly at random.

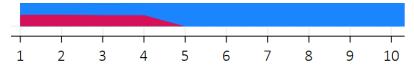
Fixed Exploration Period + Greedy



- 1. Allocate a fixed time period to exploration, during which you try all bandits uniformly at random.
- 2. Estimate mean rewards for all actions:

$$Q_t(a) = \frac{1}{N_t(a)} \sum_{i=1}^{t-1} R_i \cdot \mathbb{1}(A_i = a)$$

Fixed Exploration Period + Greedy



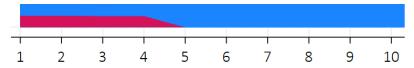
- 1. Allocate a fixed time period to exploration, during which you try all bandits uniformly at random.
- 2. Estimate mean rewards for all actions:

$$Q_t(a) = \frac{1}{N_t(a)} \sum_{i=1}^{t-1} R_i \cdot \mathbb{1}(A_i = a)$$

3. Select the action that is optimal for the estimated mean rewards (breaking ties randomly):

$$a_t = \arg\max_{a \in \mathcal{A}} Q_t(a)$$

Fixed Exploration Period + Greedy



- 1. Allocate a fixed time period to exploration, during which you try all bandits uniformly at random.
- 2. Estimate mean rewards for all actions:

$$Q_t(a) = \frac{1}{N_t(a)} \sum_{i=1}^{t-1} R_i \cdot \mathbb{1}(A_i = a)$$

3. Select the action that is optimal for the estimated mean rewards (breaking ties randomly):

$$a_t = \arg\max_{a \in \mathcal{A}} Q_t(a)$$

4. Repeat step 3 for all future time steps.

5

- Explores for the entire number of trials of the experiment
- ► simple and popular heuristic (???)

Idea: Exploit, but explore a random arm with ε probability

1. Initial phase: Try each arm and observe the rewards

Idea: Exploit, but explore a random arm with ε probability

- 1. **Initial phase:** Try each arm and observe the rewards
- 2. For each round $t = n + 1, \ldots, T$:
 - Estimate action values from *sample averages* for each arm *a*:

$$Q_t(a) = \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}(A_i = a)}{\sum_{i=1}^{t-1} \mathbb{1}(A_i = a)}$$

Idea: Exploit, but explore a random arm with ε probability

- 1. **Initial phase:** Try each arm and observe the rewards
- 2. For each round $t = n + 1, \ldots, T$:
 - Estimate action values from sample averages for each arm a:

$$Q_t(a) = \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}(A_i = a)}{\sum_{i=1}^{t-1} \mathbb{1}(A_i = a)}$$

• With probability $1 - \varepsilon$, play the arm with highest $Q_t(a)$

8

Idea: Exploit, but explore a random arm with ε probability

- 1. **Initial phase:** Try each arm and observe the rewards
- 2. For each round $t = n + 1, \ldots, T$:
 - Estimate action values from sample averages for each arm a:

$$Q_t(a) = \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \mathbb{1}(A_i = a)}{\sum_{i=1}^{t-1} \mathbb{1}(A_i = a)}$$

- With probability 1ε , play the arm with highest $Q_t(a)$
- \blacktriangleright With probability ε , choose an arm uniformly at random

A Simple ε -Greedy Bandit Algorithm

- ▶ **Initialize:** For each action a = 1 to k:
 - $ightharpoonup Q(a) \leftarrow 0$
 - $ightharpoonup N(a) \leftarrow 0$
- ► Loop forever:

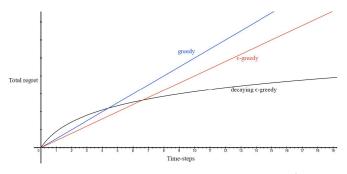
$$A = egin{cases} {\sf arg\ max_a\ Q(a)} & {\sf with\ probability\ 1-arepsilon} \ {\sf random\ action} & {\sf with\ probability\ arepsilon} \end{cases}$$

- ightharpoonup Receive reward: $R \leftarrow \text{bandit}(A)$
- ▶ Update count: $N(A) \leftarrow N(A) + 1$
- ► Update estimate:

$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)}(R - Q(A))$$

Exploration vs Exploitation

Regrets of Greedy Policies



Source: David Silver

Greedy Policy	arepsilon-Greedy	Decaying ε
Never explores	Always explores with probability $arepsilon$	Decreases exploration over time
Locks on sub-optimal policy Linear regret	See decomposition lemma Linear regret	Requires careful tuning Sub-Linear regret

 \Rightarrow Convergence rate depends on ε choice (?)

Theoretical Guarantees

$$\mathsf{Loss}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} \mathsf{loss}_{t} = \sum_{a \in \mathcal{A}} \mathbb{E} \left[\sum_{i=1}^{t-1} \mathbb{1} \{ A_{i} = a \} \right] (r^{*} - q(a))$$

- lacktriangle When arepsilon is constant, probability to explore in each step t is arepsilon
- ▶ Each action is selected with probability 1/A
- lacktriangle Probability of choosing a suboptimal action $\mathbb{P}\left(a_t
 eq a^*\right) = arepsilon/\mathcal{A}$
- Expected regret: $loss_t \geq \frac{\varepsilon}{A} \sum_{a \in A} (r^* q(a))$

Theoretical Guarantees

$$\mathsf{Loss}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} \mathsf{loss}_{t} = \sum_{a \in \mathcal{A}} \mathbb{E} \left[\sum_{i=1}^{t-1} \mathbb{1} \{ A_{i} = a \} \right] (r^{*} - q(a))$$

- ▶ When ε is constant, probability to explore in each step t is ε
- ▶ Each action is selected with probability 1/A
- lacktriangle Probability of choosing a suboptimal action $\mathbb{P}\left(a_t
 eq a^*
 ight) = arepsilon/\mathcal{A}$
- ▶ Expected regret: $loss_t \ge \frac{\varepsilon}{A} \sum_{a \in A} (r^* q(a))$
- Expected number of times action a is selected due to exploration over T steps $\frac{\varepsilon T}{A}$
- ► Expected cumulative regret: Loss $T = \frac{\varepsilon T}{A} \sum_{a \in A} (r^* q(a)) = \mathcal{O}(T)$
- Linear regret

Theoretical Guarantees

- ▶ When $\varepsilon \propto 1/t$

 - ► For large enough $t : \mathbb{P}(a_t \neq a^*) \approx \varepsilon_t = \mathcal{O}(1/t)$ ► Expected cumulative regret: Loss_T $\approx \sum_{t=1}^{T} 1/t = \mathcal{O}(\log T)$
 - Logarithmic regret

References I

- AUER, P., N. CESA-BIANCHI, AND P. FISCHER (2002): "Finite-time analysis of the multiarmed bandit problem," *Machine learning*, 47, 235–256.
- BUBECK, S., AND N. CESA-BIANCHI (2012): "Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems," *Foundations and Trends*(*R*) *in Machine Learning*, 5(1), 1–122.
- BURTINI, G., J. LOEPPKY, AND R. LAWRENCE (2015): "A survey of online experiment design with the stochastic multi-armed bandit," *arXiv* preprint *arXiv*:1510.00757.
- Sutton, R. S., and A. G. Barto (2018): "Reinforcement learning: An introduction," *A Bradford Book*, Available at http://incompleteideas.net/book/the-book-2nd.html.

Takeaways

What does the ε -greedy algorithm?

- \triangleright ε -greedy algorithm balances exploration and exploitation
- With probability ε , it explores randomly
- ▶ With 1ε , it chooses action with highest empirical mean
- ightharpoonup A constant ε ensures ongoing exploration but leads to linear regret
- ightharpoonup A decaying arepsilon enables convergence to the optimal arm and may achieve logarithmic regret