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How much to learn
about the average return?



"-First + Greedy Policy



"-First + Greedy Policy

▶ Epsilon-first is widely known as A/B testing

▶ Often applied to two-armed bandits
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Fixed Exploration Period + Greedy

1. Allocate a fixed time period to exploration, during which you try
all bandits uniformly at random.

2. Estimate mean rewards for all actions:

Qt(a) =
1

Nt(a)

t�1X
i=1

Ri � 1(Ai = a)

3. Select the action that is optimal for the estimated mean rewards
(breaking ties randomly):

at = argmax
a2A

Qt(a)

4. Repeat step 3 for all future time steps.
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"-greedy



"-greedy

▶ Explores for the entire number of trials of the experiment

▶ simple and popular heuristic (???)
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"-greedy

Idea: Exploit, but explore a random arm with " probability

1. Initial phase: Try each arm and observe the rewards

2. For each round t = n + 1; : : : ;T :
▶ Estimate action values from sample averages for each arm a:

Qt(a) =
sum of rewards when a taken prior to t

number of times a taken prior to t
=

Pt�1
i=1 Ri1(Ai = a)Pt�1
i=1 1(Ai = a)

▶ With probability 1� ", play the arm with highest Qt(a)
▶ With probability ", choose an arm uniformly at random
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A Simple "-Greedy Bandit Algorithm

▶ Initialize: For each action a = 1 to k :
▶ Q(a) 0
▶ N(a) 0

▶ Loop forever:

A =

(
argmaxa Q(a) with probability 1� "

random action with probability "

▶ Receive reward: R  bandit(A)
▶ Update count: N(A) N(A) + 1
▶ Update estimate:

Q(A) Q(A) +
1

N(A)
(R � Q(A))
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Exploration vs Exploitation



Regrets of Greedy Policies

Source: David Silver

Greedy Policy "-Greedy Decaying "

Never explores Always explores with proba-
bility "

Decreases exploration over
time

Locks on sub-optimal policy See decomposition lemma Requires careful tuning

Linear regret Linear regret Sub-Linear regret

) Convergence rate depends on " choice (?)
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Theoretical Guarantees

LossT =
TX
t=1

losst =
X
a2A

E
"
t�1X
i=1

1fAi = ag

#
(r� � q(a))

▶ When " is constant, probability to explore in each step t is "

▶ Each action is selected with probability 1=A

▶ Probability of choosing a suboptimal action P (at 6= a�) = "=A

▶ Expected regret: losst �
"

A

P
a2A(r

� � q(a))

▶ Expected number of times action a is selected due to exploration
over T steps "T

A

▶ Expected cumulative regret: LossT = "T
A

P
a2A(r

� � q(a)) = O(T )

▶ Linear regret
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Theoretical Guarantees

▶ When " / 1=t
▶ For large enough t : P (at 6= a�) � "t = O(1=t)
▶ Expected cumulative regret: LossT �

PT
t=1 1=t = O(logT )

▶ Logarithmic regret

13



References I

Auer, P., N. Cesa-Bianchi, and P. Fischer (2002): “Finite-time
analysis of the multiarmed bandit problem,” Machine learning, 47, 235–256.

Bubeck, S., and N. Cesa-Bianchi (2012): “Regret Analysis of Stochastic
and Nonstochastic Multi-armed Bandit Problems,” Foundations and
Trends® in Machine Learning, 5(1), 1–122.

Burtini, G., J. Loeppky, and R. Lawrence (2015): “A survey of online
experiment design with the stochastic multi-armed bandit,” arXiv preprint
arXiv:1510.00757.

Sutton, R. S., and A. G. Barto (2018): “Reinforcement learning: An
introduction,” A Bradford Book, Available at
http://incompleteideas.net/book/the-book-2nd.html.

14

http://incompleteideas.net/book/the-book-2nd.html


Takeaways



What does the "-greedy algorithm?

▶ "-greedy algorithm balances exploration and exploitation

▶ With probability ", it explores randomly

▶ With 1� ", it chooses action with highest empirical mean

▶ A constant " ensures ongoing exploration but leads to linear regret

▶ A decaying " enables convergence to the optimal arm and may
achieve logarithmic regret
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