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Abstract

This note suggests a BOLS (batched ordinary least squares) test statistic for inference of
treatment effects in adaptive experiments. The statistic provides a precision-equalizing ag-
gregation of per-period treatment-control differences under heteroskedasticity. The combined
test statistic is a normalized average of per-period heteroskedastic z-statistics and can be
used to construct asymptotically valid confidence intervals. We provide simulation results
comparing rejection rates in the typical case with few treatment periods and few (or many)
observations per batches.
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1. Introduction

Adaptive experiments have become increasingly common because they allow for earning
while learning. Such designs have been applied, for example, by Kasy and Sautmann (2021),
Caria et al. (2023), Offer-Westort et al. (2021), Avivi et al. (2021), Tabord-Meehan (2022),
Hoffmann et al. (2023), Gaul et al. (2025). They combine exploration and exploitation
by updating treatment probabilities based on accumulated evidence. However, the depen-
dence of assignment on past outcomes breaks the usual assumptions of random sampling and
independent treatment assignment, complicating statistical inference. This is particularly
problematic if there is no clear difference between outcomes under different treatments. For
example, usual confidence intervals and bootstrap methods may overreject nullhypotheses.
Hadad et al. (2021) use large number-of-trial asymptotics to construct generally valid confi-
dence intervals. Zhang et al. (2020) note that typically the number of trials is limited but
treatment assignment is adapted after each batch of observations comes in. For this case,
they derived valid frequentist inference procedures for large batch size asymptotics under
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homoskedasticity. This note extends their argument to the more general and empirically
relevant case of heteroskedastic outcomes, deriving the corresponding BOLS (batched OLS)
test statistic and explores its asymptotic distribution. The heteroskedastic case is relevant
because researchers design experiments usually in such a way that not only the outcome
means but also their variances differ by treatment arm. Often the outcome is binary (suc-
cess/failure), which results in heteroskedasticity by construction.

2. Treatment Effects in Adaptive Experiments

Let periods be indexed by t = 1, . . . , T . In period t, there are N1,t treated and N0,t

control units, with nt = N1,t +N0,t. Let the per-period difference in sample means be

∆̂t = Ȳ1,t − Ȳ0,t.

Within period t, the treated and control sample means are independent with possibly differ-
ent variances

Var(Ȳ1,t) =
σ2
1,t

N1,t

, Var(Ȳ0,t) =
σ2
0,t

N0,t

.

Hence, the variance of the period difference is

Var(∆̂t) = vt ≡
σ2
1,t

N1,t

+
σ2
0,t

N0,t

. (1)

3. Inference

3.1. Scaling weights
In adaptive experiments, the selection probability is random because it depends on the

realized history. Thus, the variance of the OLS estimator across periods depends on the se-
lection probability that results in asymptotic non-normality. Intuitively, if outcomes under
two treatments are hard to distinguish, either treatment might get assigned more observa-
tions in repeated draws, and consequently the selection probability does not concentrate.
Zhang et al. (2020) show that the selection probability is fixed, when conditioning on the
history up to a given batch, and that the batchwise OLS, scaled by the selection probability,
is asymptotically normal. We construct an estimator across periods scaled by the inverse
standard error, such that each period’s standardized mean difference has the same influence.
Let

wt =
1

√
vt
, S =

T∑
s=1

ws.

Define the weighted average effect estimate

∆̂ =
T∑
t=1

wt

S
∆̂t.
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Remark 1. (i) When assignment probabilities and batch sizes are fixed and variances are
time-invariant, all periods are weighted equally in the combined statistic with 1/T . (ii)
This estimator and the test statistic (equation 2) can be shown to be normal under large T
asymptotics (Hadad et al., 2021, cf. Theorem 4) and under large batch size nt asymptotics
with fixed T (Zhang et al., 2020, cf. Theorem 3). The asymptotic distribution can be use to
approximate their finite-sample distribution when constructing confidence intervals.

3.2. Variance of the weighted estimator
By construction, w2

t vt = 1, hence

Var(∆̂) =
T∑
t=1

(wt

S

)2

vt =
1

S2

T∑
t=1

w2
t vt =

T

S2
.

Therefore,

SE(∆̂) =

√
Var(∆̂) =

√
T

S
.

3.3. Heteroskedastic Z-statistic
For testing H0 : ∆ = c, define the period z-scores and the combined statistic

zt,het =
∆̂t − c
√
vt

, Zhet =
∆̂− c

SE(∆̂)
=

1√
T

T∑
t=1

zt,het. (2)

3.4. Feasible implementation
In practice, the arm- and period-specific variances are unknown. Let σ̂2

a,t be consistent
estimators for a ∈ {0, 1} and the feasible test statistic Ẑhet.

Corollary 1 (Asymptotically valid confidence interval). Under the consistent variance es-
timation with feasible weighted estimator ∆̂F , the two-sided (1− α) confidence interval is

CI1−α(∆) = ∆̂F ± Ẑhet,1−α/2 SE(∆̂F ).

Remark 2 (Variance estimation). (i) For small samples, one may prefer finite-sample–
adjusted within-period variance estimators (e.g., HC2/HC3). Under bounded leverage, these
deliver consistency for v̂t (MacKinnon and White, 1985; Davidson and MacKinnon, 1993).
(ii) Under stationarity, arm specific variances σ̂2

t

p−→ σ2 may be preferable (cf. corollary 4
Zhang et al., 2020). (iii) Under adaptivity,homoskedasticity (σ2

1,t = σ2
0,t = σ2), and time-

invariant batch size, the rule reduces to wt

S
=

√
N1,tN0,t/

∑T
s=1

√
N1,sN0,s, so batches with

more balanced sizes have larger weight. See Table A.1. (iv) it is straightforward to extend
this to k treatment arms and contextual settings.

4. Monte Carlo Simulations

We compare three estimators: the heteroskedasticity-robust OLS statistic, the BOLS
statistic derived under homoskedasticity, and our heteroskedasticity-robust BOLS statistic.
Data are generated using two common adaptive sampling rules, ε-Greedy and Bernoulli
Thompson Sampling in two-arm settings.
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(a) ε-Greedy
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(b) Thompson Sampling

Notes: The figure shows the Monte Carlo simulation results from a simulation with 100,000 repetitions. The left-hand panel
shows the distribution of the heteroskedastic OLS, homoscedastic BOLS and heteroskedasticity-robust BOLS test statistic for
data generated from ε-Greedy experiment. The batch size is 500, the number of batches 25, the experiment consists of two
arms with an expected value of 1 and the standard deviation is 1 for arm one and 4 for arm two. The red dotted indicates the
density of the standard normal distribution. The right-hand panel shows data generated from a Bernoulli Thompson algorithm.
The batch size is 500, the number of batches 25, the experiment consists of two arms with an expected value of 0.7 and 0.4.

Figure 1: Simulation I

Simulation I: Heteroskedastic Test Statistic with Large Batch Size. Figure 1 shows the em-
pirical distributions of the test statistics with 25 batches each with a size of 500 observations.
For ε-Greedy (left panel), both arms have Gaussian outcomes with mean 1, with variances
(42, 12) (think of log incomes). The exploration rate is ε = 0.2. Each design is repeated
100,000 times. Both OLS and the homoskedastic BOLS statistic deviate markedly from
normality in the zero-margin case, consistent with Zhang et al. (2020). The homoskedastic
BOLS statistic overrejects severely (17% instead of 5%). OLS yields approximately correct
rejection rates but exhibits clearly non-normal behavior. In contrast, our heteroskedasticity-
robust BOLS statistic closely matches the standard normal distribution and delivers correct
5% rejection rates.

For Thompson Sampling (right panel), we set Bernoulli success probabilities (p1, p2) =
(0.7, 0.4). The homoskedastic BOLS statistic overrejects (≈ 6%) because it ignores het-
eroskedasticity. Because success probabilities differ substantially, both OLS and our heteroskedasticity-
robust BOLS statistic closely match the standard normal distribution and delivers correct
5% rejection rates.

Simulation II: Rejection Rates in Small and Large Samples. To study behavior in smaller
samples, we vary the number of batches (10–100) and batch sizes (10–100). Each configu-
ration is repeated 10,000 times. Figures 2 and 3 report rejection rates of a 5% significance
level test of H0 : ∆ = 0.

For Thompson Sampling (Figure 2), the zero-margin case exhibits no heteroskedasticity,
so the heteroskedastic and the homoskedastic BOLS statistic perform well with rejection
rates near 5%. The heteroskedasticity-robust OLS overrejects somewhat. When margins
increase, inducing heteroskedasticity, the homoskedastic BOLS statistic begins to overreject,
while both robust statistics remain close to nominal size.

For ε-Greedy (Figure 3), the homoskedastic BOLS statistic is unreliable in all settings: it
overrejects sharply at ∆ = 0 and underrejects for positive margins. The heteroskedasticity-
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(a) ∆ = 0
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(b) ∆ = 0.1
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(c) ∆ = 0.2

Notes: This figure shows the Monte Carlo simulation results for the Bernoulli Thompson Sampling algorithm. On the x-axis
are varying combination of batch size and number of batches. On the y-axis is the rejection rate. The parameter ∆ indicates
the difference between the true expected values of both arms. Each dot shows the average rejection rate for the given test
statistic which is indicated by color. For each batch size/ number of batches combinations 10,000 repetitions were executed. In
panel (a) the probabilities for arm 1 is 0.5 and arm 2 0.5. In panel (b) it is p1 = 0.6 and p2 = 0.5. For panel (c) it is p1 = 0.7
and p2 = 0.5.

Figure 2: Bernoulli Thompson Sampling
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(a) ∆ = 0
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(b) ∆ = 1
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(c) ∆ = 2

Notes: This figure shows the Monte Carlo simulation results for the ε-Greedy algorithm. On the x-axis are varying combinations
of batch size and number of batches. On the y-axis is the rejection rate. The parameter ∆ indicates the difference between the
true expected values of both arms. Each dot shows the average rejection rate for the given test statistic which is indicated by
color. For each batch size/ number of batches combinations 10,000 repetitions were executed. In panel (a) the expected value
µ1 for arm 1 is 1 and µ2 for arm 2 is also 1. The standard deviation in all panels for arm 1 is σ1 = 2 and for arm 2 is σ2 = 1.
In panel (b) it is µ1 = 2 and µ2 = 1. For panel (c) it is µ1 = 3 and µ2 = 1.

Figure 3: ε-Greedy

robust OLS statistic performs moderately well and improves as the margin grows. Across all
designs, our heteroskedasticity-robust BOLS statistic maintains rejection rates close to 5%.

5. Conclusion

Adaptive experiments have made precision-weighted inference increasingly relevant in se-
quential settings where treatment assignment depends on past outcomes. The BOLS square-
root inverse-variance statistic provides a simple, asymptotically valid procedure for inference
under heteroskedasticity, extending previous results derived for the homoskedastic case.
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Appendix A. Weight structure under homoskedasticity and heteroskedasticity

Table A.1: Weight structure under homoskedasticity and heteroskedasticity

Non-adaptive Adaptive

Homoskedastic case: σ2
1,t = σ2

0,t = σ2

Treatment share πt πt = π (fixed) πt varies (depends on history)

Variance vt vt =
σ2

nt π(1− π)
vt =

σ2

nt πt(1− πt)

Weight
wt

S

√
nt∑T

s=1

√
ns

√
nt πt(1− πt)∑T

s=1

√
ns πs(1− πs)

Heteroskedastic case: σ2
1,t ̸= σ2

0,t

Treatment share πt πt = π (fixed) πt varies (depends on history)

Variance vt vt =
1

nt

(
σ2
1,t

π
+

σ2
0,t

1− π

)
vt =

1

nt

(
σ2
1,t

πt

+
σ2
0,t

1− πt

)

Weight
wt

S

√
nt

(
σ2
1,t

π
+

σ2
0,t

1−π

)−1/2

∑T
s=1

√
ns

(
σ2
1,s

π
+

σ2
0,s

1−π

)−1/2

√
nt

(
σ2
1,t

πt
+

σ2
0,t

1−πt

)−1/2

∑T
s=1

√
ns

(
σ2
1,s

πs
+

σ2
0,s

1−πs

)−1/2

Notes: nt = N1,t +N0,t is total batch size, and πt = N1,t/nt is the treatment share. Under
homoskedasticity, weights depend on both sample size and balance πt(1− πt). Under heteroskedasticity,
weights additionally adjust for treatment-specific outcome variances σ2

a,t.
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